
AFRL-IF-RS-TR-1998-38
Final Technical Report
April 1998

TEST BUS EVALUATION

Texas Instruments

Philip Dennis, Sue Vining, Wayne Daniel, and Jim Manschen

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980603 044
Copyright 1993, Texas Instruments, Inc.

All Rights Reserved
This material may be reproduced by or for the U.S. Government pursuant to the copyright license

under clause at DFARS 252.227-7013 (October 1988).

fanC QUÄLET ZN8FECIED1

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-3 8 has been reviewed and is approved for publication.

APPROVED: /
FRANK H. BORN
Project Engineer

FOR THE DIRECTOR:
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to overage 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering end maintaining the data needed, and completing and reviewing
the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate lor Information
Operations and Reports 12)5 Jefferson Devis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

TEST BUS EVALUATION

2. REPORT DATE

 April 1998
3. REPORT TYPE AND DATES COVERED

Final Mar 92 - Jan 93

6. AUTHOR(S)

Philip Dennis, Sue Vining, Wayne Daniel, and Jim Manschen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Texas Instruments
Defense Systems & Electronics Group
6500 Chase Oaks Blvd, Mail Stop 8407
Piano TX 75023
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTB
525 Brooks Road
Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-88-D-0028/T56
PE -62702F
PR -2338
TA -01
WU-PI

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-38

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank H. Born/IFTB/(315) 330-4726

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release;; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The purpose of the Test Bus Evaluation report was to evaluate and document the applications and impact of standard test
buses on overall system testability-. Current and proposed test bus architectures were surveyed and identified as most
appropriate for coordinating testability approaches between the chip and the system level. Eleven test bus architectures were
investigated.

A Data Gathering task was first undertaken to characterize the major attributes of the test buses. These attributes include the
bus architecture, current status, functions supported, interface and number of pins, protocol, intended uses and speed. This
data collection included a library search of existing literature that is documented in the Bibliography.

Current and planned test bus extensions were explored and documented in the report. Test Bus control issues were
investigated and documented to include hardware controller applications to device and module test buses, and test bus control
software. Standard test bus control languages and vector formats are also addressed in this report.

14. SUBJECT TERMS

Testability, Built-in-Test, Bus Architecture, Test Software

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

232
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 04

TABLE OF CONTENTS.

EXECUTIVE SUMMARY ix

PREFACE • x±

1. TEST BUS ARCHITECTURE SURVEY • 1-1

1.1. Introduction 1"!

1.1.1. System Level Test Buses 1-1

1.1.2. Module Level Test Buses 1-2

1.1.3. Device Level Test Buses 1-4

1.2. IEEE 1149.1 /Joint Test Action Group (JTAG) 1-5

1.2.1. Overview and Intended use 1-5

1.2.2. Current Status I"6

1.2.3. Interface/Number of Pins 1-6

1.2.4. Architecture I-7

1.2.5. Protocol 1-H

1.2.6. Instructions supported • 1-12

1.2.7. Application 1-15

1.2.8. Bus timing 1-23

1.3. IEEE PI 149.2 Extended Digital Serial Subset 1-23

1.3.1. Overview and Intended Use 1-23

1.3.2. Current Status 1-23

1.3.3. Interface/Number of Pins 1-23

1.3.4. Architecture 1-24

1.3.5. Functions Supported 1-27

1.4. IEEE PI 149.4 Mixed-Signal Test Bus Standards 1-27

1.4.1. Overview and Intended use 1-27

1.4.2. Current Status • 1-27

1.4.3. Architectural Elements of Proposed Frameworks 1-28

1.5. IEEE PI 149.5/TM-Bus 1-34

1.5.1 Overview and Intended Use 1-34

1.5.2. Current Status • 1-35

1.5.3. Interface/Number of Pins 1-36

1.5.4. Architecture 1-37

1.5.5. Bus Protocol 1-38

1.5.6. Bus Timing 1-46

1.6. IEEE 488 (GPIB). 1-47

1.6.1. Overview and Intended use 1-47

1.6.2. Current Status 1-47

1.6.3. Interface / Number of Pins 1-48

1.6.4. Architecture..... 1-48

1.6.5. Protocol 1-50

1.6.6. Functions supported 1-51

1.6.7. Speed 1-55

1.7. MIL. STD. 1553B/ 1773 1-56

1.7.1. Overview and Intended use 1-56

1.7.2. Current Status 1-56

1.7.3. Interface/Number of Pins 1-57

1.7.4. Architecture 1-58

1.7.5. Protocol 1-61

1.7.6. Functions supported 1-62

1.7.7. Speed 1-63

1.8. High Speed Data Bus 1-65

1.8.1. Overview and Intended use 1-65

1.8.2. Current Status 1-65

1.8.3. Interface/Number of Pins 1-65

1.8.4. Architecture 1-66

1.8.5. Protocol 1-67

1.8.6. Functions supported 1-68

1.8.7. Speed... 1-69

1.9. IEEE P1394 1-69

1.9.1. Overview and Intended use 1-69

1.9.2. Current Status 1-70

1.9.3. Interface/Number of Pins 1-71

ii

1.9.4. Architecture I"7*

1.9.5. Protocol 1_71

1.9.6. Functions supported 1_74

1.9.7. Speed l'16

2. TEST BUS EXTENSIONS 2A

2.1. IC • 2_1

2.1.1. Internal Scan • —2_1

2.1.2. BIST • • 2"6

2.1.3. Real-time event qualification 2-11

2.1.4 Embedded Software Emulation and Debug via IEEE 1149.1 2-19

2.1.5. Fault Emulation 2"24

2.2. Module •-.. • 2_31

2.2.1. Intermodule testing 2~31

2.2.2. TM-BuswithTSMD......... • 2"32

2.2.3. Extending IEEE 1149.1 in a Backplane Environment 2-35

2.3 System. 2"42

3. TEST BUS CONTROL •—• • 3-1

3.1. Introduction . • 3-1

3.2. Test Bus Control Hardware. • • 3-1

3.2.1. IEEE 1149.1 3-1

3.2.2. IEEE PI 149.5 (TM-Bus) -3-2

3.2.3. MIL-STD-1553B. '.. -. 3-2

3.3. Software Control 3-3

3.4. Supporting Control Languages 3-4

3.4.1. Boundary Scan Description Language (BSDL).. 3-4

3.4.2. Serial Vector Format (SVF) -.• 3-8

4. TEST BUS APPLICATIONS 4-1

4.1. Test Bus Architecture And Interfaces 4-1

4.1.1. Avionics System Architecture 4-1

4.1.2. System to Module. •• 4-2

4.1.3. Module to IC • • 4-7

4.2. Specific Application Examples 4-8

in

4.2.1. F-16 Modular Mission Computer 4-9

4.2.2. F-22 Vehicle Management System Test Bus Architecture 4-12

4.2.3. F-22 Radar Array Power Supply 4-14

4.2.4. Aladdin Test Bus Architecture 4-17

4.2.5. Solid State Recorder (SSR) 4-21

5. TEST BUS IMPACTS 5-1

5.1. IEEE 1149.1 (JTAG) 5-1

5.1.1. Design 5-1

5.1.2. Manufacturing and Test (Fault Detection & Isolation) 5-7

5.1.3. Field Support and Maintenance 5-9

5.1.4. Cost Summary 5-12

5.2. IEEEP1149.5/TM-Bus 5-13

5.2.1. Design Considerations 5-13

5.2.2. Fault Detection/Isolation 5-14

5.2.3. Cost Summary 5-14

5.3. System Buses 5-15

6. TEST BUS EVALUATION RECOMMENDATIONS 6-1

6.1. Test Bus Design Criteria Recommendations 6-1

6.2. Management Recommendations 6-3

6.2.1 DoD Policies and Directives 6-3

6.2.2 DoD R&D Funding Recommendations 6-5

Appendix A. Commercially Available Test Bus Products A-l

ASIC Foundries with 1149.1 Support A-l

FPG A Vendors with 1149.1 Support A-2

Appendix B. Bibliography B-l

Appendix C. Acronyms C-l

iv

LIST OF FIGURES.

Figure 1.1-1. A System Hierarchical Testing Approach 1-1

Figure 1.1.1-1. Test Functions Supported by System Buses 1-2

Figure 1.1.2-1. TM-Bus Interfaces to Module and System Test Functions.... 1-3

Figure 1.1.2-2. Module Test Bus Interfaces to Ad-hoc BIT/BIST 1-4

Figure 1.1.3. IEEE 1149.1 Interfaces to Device BIST 1-5

Figure 1.2.3-1. IEEE 1149.1 Ring Connection 1-6

Figure 1.2.3-2. IEEE 1149.1 Star Connection 1-7

Figure 1.2.4-1. IEEE 1149.1 Architecture 1-8

Figure 1.2.4-2. IEEE 1149.1 TDO Selection. 1-9

Figure 1.2.4-3. IEEE 1149.1 Generic Boundary Register Cell 1-10

Figure 1.2.5. IEEE 1149.1 Test Access Port Protocol 1-12

Figure 1.2.7-1. Pins-In and Pins-Out Testing using IEEE 1149.1 1-15

Figure 1.2.7-2. Module Partitioning for Testability 1-16

Figure 1.2.7-3. IC Partitioning For Testability 1-17

Figure 1.2.7-4. Backplane Testing using IEEE 1149.1 1-18

Figure 1.2.7-5. Testing Embedded Memory 1-19

Figure 1.2.7-6. Testing Analog Logic 1-20

Figure 1.2.7-7. PC Based Test Stations 1-20

Figure 1.2.7-8. Board-Level Testing System using IEEE 1149.1 1-21

Figure 1.3.4-1. Minimum PI 149.2 Architecture 1-24

Figure 1.3.4-2. Logic Diagram for the SAP and Test Control Logic,
Including the IDR and the Bypass Register 1-26

Figure 1.4.3-1. Parallel Connection of Analog Test Bus 1-29

Figure 1.4.3-2. Minimum Implementation of Switching Network 1-30

Figure 1.4.3-3. Six-Switch Implementation of Switching Network 1-31

Figure 1.4.3-4. Global BIT Resource as Defined in ICT Strawman. 1-33

Figure 1.5.3. Architecture Interface 1-36

Figure 1.5.4. PI 149.5 Test Bus Architecture 1-37

Figure 1.5.5-1. PI 149.5 Protocol Layers 1-38

Figure 1.5.5-2. Link-Layer Bus States 1-40

Figure 1.5.5-3. Generic PI 149.5 Message Format 1-43

Figure 1.6.4-1. Basic 488 System Architecture 1-49

Figure 1.6.4-2. Typical IEEE 488 System Configuration 1-50

Figure 1.6.6. General IEEE 488 Functional Areas 1-54

Figure 1.7.1. Typical Multiplex Data Bus Terminal Connectivity

Figure 1.7.4-1. Terminal Functional Elements 1-59

Figure 1.7.4-2. Bus Level Topology 1-60

Figure 1.7.5. 1553/1773 Word Formats 1-62

Figure 1.8.4. High Speed Data Bus Architecture 1-67

Figure 1.9.1. P1394 Serial Bus Physical Topology 1-70

Figure 1.9.4. Module Node Architecture 1-71

Figure 1.9.5. IEEE P1394 Bus Protocol Element Connectivity 1-72

Figure 2.1.1-1. Non-Scannable IC Logic Design 2-2

Figure 2.1.1-2. Non-Scannable Module Circuit 2-2

Figure 2.1.1-3. Scannable Modules B,C,D,E, and F 2-3

Figure 2.1.1-4. Scannable Module A 2-4

Figure 2.1.1-5. Scannable IC Logic Design 2-4

Figure 2.1.1-6. Internal Scan in 1149.1 Architecture 2-5

Figure 2.1.2-1. Embedded 1149.1 Test Controller 2-8

Figure 2.1.2-2. Embedded 1149.1 Test Controller Architecture 2-9

Figure 2.1.2-3. Generating Scan Offsets On-The-Fly 2-10

Figure 2.1.2-4. Using Boundary Scan for PWB BIST 2-11

Figure 2.1.3-1. Event Qualification Architecture 2-13

Figure 2.1.3-2. EQUAL Protocol 1 2-15

Figure 2.1.3-3. EQUAL Protocol 2 2-16

Figure 2.1.3-4. EQUAL Protocol 3 2-17

Figure 2.1.3-5. Global Event Qualification 2-18

Figure 2.1.4-1. PC Based Test Facility 2-20

Figure 2.1.4-2. Embedded Emulation Control. 2-21

Figure 2.1.4-3. Embedded Emulator User Interface Features 2-22

Figure 2.1.4-4. Multi-Processor Embedded Emulation Control 2-23

Figure 2.1.4-5. Using Boundary-Scan during System Debug 2-24

vx

Figure 2.1.5-1. Common Physical Fault Insertion Methods 2-26

Figure 2.1.5-2. Fault Emulation Timing Diagram 2-28

Figure 2.1.5-3. State Machine with Error Checking and Boundary Scannable
Inputs 2-29

Figure 2.1.5-4. Processor Based Design to Support Fault Emulation via
Boundary Scan 2-30

Figure 2.2.1-1. Module Interconnect Test Methods 2-31

Figure 2.2.2-1. Fault Occurrence Correlation To Stress Data 2-33

Figure 2.2.2-2. TSMD Architecture •• 2-34

Figure 2.2.3-1. Board Using ASP Circuit 2-37

Figure 2.2.3-2. Backplane ASP Connections 2-38

Figure 2.2.3-3. Select and Acknowledge Protocols 2-39

Figure 2.2.3-4. ASP Circuit Example 2-40

Figure 3.4.2. Scan Chain of Six ICs •• 3-9

Figure 4.1.1. An Advanced Avionics Architecture 4-2

Figure 4.1.2-1. Subsystem Bus Architecture 4-4

Figure 4.1.2-2. Module Test Bus Architecture 4-5

Figure 4.1.3. Integrated Circuit Test Bus Architecture 4-8

Figure 4.2.1-1. F-16 MMC Architecture 4-9

Figure 4.2.1-2. F-16 MMC Test Bus Architecture 4-10

Figure 4.2.1-3. F-16 MMC DP32 Module Test Architecture.... 4-11

Figure 4.2.2-1. F-22 Vehicle Management System Architecture 4-12

Figure 4.2.3. Array Power Supply Block Diagram 4-15

Figure 4.2.4-1 Basic Processing Module Architecture 4-18

Figure 4.2.4-2. Aladdin Test Bus Architecture 4-19

Figure 4.2.4-3. SEM-E Aladdin Test Bus Architecture 4-20

Figure 4.2.5-1. GigaBitMemory Unit. 4-21

Figure 4.2.5-2. Scan Path Architecture • 4-22

Figure 5.1.1. Standard Cell ASIC 1149.1 Overhead 5-3

Vll

LIST OF TABLES.

Table 1.4.3. Function of Six-Switch Network 1-32

Table 1.5.5-1. MTM-Bus Packet Types 1-42

Table 1.5.5-2. MTM-Bus Command Codes 1-45

Table 1.6.3. ffiEE 488 Bus Signal Lines 1-48

Table 1.6.5-1. ffiEE 488.1 Messages 1-52

Table 1.6.5-2. ffiEE 488.2 Messages 1-53

Table 1.7.3. 1553B/1773 Data Bus/Coupling Requirements 1-58

Table 1.7.6. Terminal Functional Processes 1-64

Table 1.8.3. Bus Element Characteristics 1-66

Table 1.9.5. Transaction Layer Transaction Types/Actions 1-73

Table 2.3-1. System Bus Throughput Requirements 2-43

Table 2.3-2. System Bus Expansion Capability 2-43

Table 3.4.1. Boundary Scan Characteristics and Their Correlation to
BSDL 3-6

Table 3.4.2. Stable State Paths 3-12

Table 4.2.4. Aladdin BPM Test Logic Summary 4-18

Table 5.1.1-1. 1149.1 IC Package/Pin Ratio 5-2

Table 5.1.1-2. ASIC Cell Gate Count 5-3

Table 5.1.1-3. Overhead Examples of Implementing IEEE 1149.1 and
BIST 5-4

Table 5.1.3-1. Feature Comparison for Standard Octal and Testability
Octal Parts 5-10

Table 5.1.3-2. Reliability Comparisons 5-11

Table 5.1.4. Differences between Traditional (Ad-hoc) and Boundary-
Scan Methods 1 5-12

Vlll

EXECUTIVE SUMMARY

The purpose of the Test Bus Evaluation report was to evaluate and document the
applications and impact of standard test buses on overall system testability. Current and
proposed test bus architectures were surveyed and identified as most appropriate for
coordinating testability approaches between the chip and the system level. The following
test bus architectures were investigated;

IEEE Std 1149.1, Standard Test Access Port and Boundary Scan Architecture
IEEE Std PI 149.2, Extended Digital Serial Test Bus
IEEE Std PI 149.4, Mixed-Signal Test Bus
IEEE Std PI 149.5, Standard Module Test and Maintenance Bus Protocol
JIAWG TM-Bus (Joint Integrated Avionics Working Group)
SAE TM-Bus (Society of Automotive Engineers)
IEEE-488, General Purpose Interface Bus (GPIB)
Mil-Std-1553B, Multiplexed Data Bus
Mil-Std-1773, Fiber Optic Data Bus
High Speed Data Bus
IEEE P1394, High Speed Serial Bus

A Data Gathering task was first undertaken to characterize the major attributes of the test
buses identified above. These attributes include the bus architecture, current status,
functions supported, interface and number of pins, protocol, intended uses and speed.
This data collection included a library search of existing literature that is documented in
the Bibliography of this report

Current and planned test bus extensions were explored and documented in the report The
following test and support techniques have been identified which work with the above test
bus capabilities. Device level extensions include Built-in Self-Test (BIST), Internal Scan,
Real-time Event Qualification, Embedded Design Debugger, and Fault Emulation.
Module level extensions include Intermodule Testing, TM-Bus with Time Stress
Measurement Device (TSMD), and Applying IEEE 1149.1 in a Backplane Environment
No system level extensions for test were identified, primarily due to the fact that test
information is simply communicated via functional system buses.

Test bus control issues were investigated and documented to include hardware controller
applications to device and module test buses, and test bus control software. The report
addresses standard test bus control languages and vector formats.

IX

A standard test and maintenance architecture is described, based on the JIAWG common
modules, to identify how the different levels of test buses (device, module, system)
interface and communicate in a typical avionics system. This architecture defines test bus
data throughput and attributes required to support fault identification, fault location, false
alarm filtering and fault logging.

The application of test buses in various defense contract system architectures was also
studied and documented. This study included system architectures that were both existing
and under development. The efforts chosen included the F-22 Vehicle Management
System, F-22 Radar, F-16 Modular Mission Computer, the Aladdin Processor, and the
Darpa Solid State Recorder. These systems included a mix of VHSIC, VLSI, multi-chip
module, surface mount technology, and high density memory, along with FPGA, standard
glue logic, and mixed signal technologies. The systems include both off-the-shelf parts,
with limited testability, and custom parts, with extensive BIST.

The test bus architectures identified in the Survey were evaluated to determine their
impacts on module and system level test. Advantages and disadvantages were identified
and the 'value added' of each test bus architecture was defined. Design impacts, such as
gate count, pins required, power, throughput, cost and reliability, are discussed in
relationship to design verification, manufacturing test, and field support and maintenance.

Final recommendations were generated to support test bus architecture design, allocation
and verification requirements. Recommendations addressed issues on system level
architectures, proposed extensions, design automation tools and techniques. Management
level recommendations have been made to the government on the level and extent that test
bus standards and architectures should be specified in program requirements.

Finally, an Appendix is provided describing the current tools and vendor products
available on the market today for the test bus standards.

PREFACE

The Test Bus Evaluation (TBE) report is based on years of test bus development and
application's experience at Texas Instruments. Since the early 1980s TI has undertaken a
key role in defining test buses; first, for the VHSIC program and then later as a key
contributor in both JTAG (in Europe) and IEEE 1149.X (in the USA). TI is continuing its
contribution to these efforts as a key player in the definition of the IEEE PI 149.5 test bus.

A major portion of the TBE study has centered on the device level test bus due to the
strong influence on system testability of the IEEE 1149.1 standard. Although module
level test and maintenance buses have existed from the VHSIC program era, there has
been little success in creating an industry standard module test bus until the emergence of
IEEE PI 149.5. The system buses identified in the TBE study are not dedicated test buses.
They primarily communicate test status and pass down commands and data.

Special acknowledgement is given to Mr. Lee Whetsel and Mr. Wayne Daniel of TTs
Semiconductor Group Test Technology Center and Mr. Greg Young, Don Sterba and Rex
Sallade of TI's Defense Systems & Electronics Group Test Technology Laboratory for
their contributions to this report.

XI

system buses (MIL-STD-1553B, etc.) have always treated test and diagnostic data like
any other mission data. It was not recognized until the late 1980s that dedicated fault
management data at the system level was needed. Due to the complexity of the

electronics and driven by stringent aircraft fault tolerance requirements, system h\d
analysis in flight is needed to increase failure isolation and decrease pilot false alarms. The
data for these analyses has put new demand on the old buses and new requirements on
emerging system bus standards (such as the High Speed Data Bus, Mil-Std-1773 and
IEEE P1394). Figure 1.1.1-1 depicts typical data and communication interfaces that an
Aircraft Fault Management System has to address via these system buses.

Figure 1.1.1-1. Test Functions Supported by System Buses

1.1.2. Module Level Test Buses.

During the VHSIC development it was realized that dedicated test buses would be
required to support system to module to device test processes. The module level Test and
Maintenance Bus (TM-Bus) and the device level Element Test and Maintenance Bus
(ETM-Bus) were developed.

1-2

' ' SBIT - Start-up Built-in Test CST - Continuous Self-Test
IBIT - Initiated BIT ETS - Bttended Self-Test
PB1T - Periodic BIT BIST - Built-in Self-Test

Figure 1.1.2-1. TM-Bus Interfaces to Module and System Test Functions

Module level buses for test were not new to the engineering world since the IEEE 488
General Purpose Interface Bus had its roots in interfacing modules to test equipment and
instrumentation in the mid 1970s. But there had never been an effort, before VHSIC, to
standardize an on-board data bus dedicated to test. The TM-Bus caught on, especially in
mission and data processors, and was redefined many times until the most recent JIAWG
common module effort. Figure 1.1.2-1 depicts this application and how the TM-Bus
interfaces with other module and system test functions. But even after the JIAWG
specification, implementations of the TM-Bus within defense contracts were different,
preventing bus compatibility between common modules. An industry wide accepted
solution would need to occur to solve this problem.

This solution has emerged out of the success of the IEEE 1149.1 device test bus efforts.
Using lessons learned from this effort, defense (JIAWG) and commercial (SAE) groups
have come together to create the IEEE PI 149.5 Module Test and Maintenance (MTM)
bus. Final balloting has assured a wide spread acceptance and expectation of an official
IEEE 1149.5 standard in early 1993.

A key contribution of the IEEE PI 149.5 will be the definition of the interface to the IEEE
1149.1 test bus. This is critical to achieve the ultimate hierarchical testability goals.
Figure 1.1.1-2 depicts the module level test interfaces, including the interaction between
the MTM bus, the IEEE 1149.1 device test bus and other ad-hoc BIT/BIST features.

1-3

BUILT-IN
EMULATION
o BREAKPOINT
o SINGLE-STEP
o READ/WRITE

* * •

BOARD
FAULT LOG

IEEE 1149.1
TEST BUS
FROM IC-TO-IC

TEST AND
MAINTENANCE
BUS (TM-BUS/
IEEE P1149.5)

MICRO-
PROCESSOR

GLUE
LOGIC H
ASIC

PARITY

TM-BUS
INTERFACE

UNIT

FAULT
LOG I/O

ASIC

ASICS AND
MCMs WITH
BUILT-IN
SELFTEST,
BOUNDARY
SCAN, ...

MEMORY WITH
PARITY/EDAC

BUILT-IN TEST
CODE IN ROM
- Power-up BIT
- Initiated BIT
- Concurrent/

Periodic BIT

BOARD I/O
LOOP-BACK

Figure 1.1.2-2. Module Test Bus interfaces to Ad-hoc BIT/BIST

1.1.3. Device Level Test Buses.

Another outgrowth of the VHSIC program was the development of the ETM-Bus.
ETM-Bus adoption was limited to a few DoD contractors and lacked a common
universal test command set. Other vendors had proprietary solutions and therefore
prevented interoperability. IBM had its Level Sensitive Scan while TT used a proprietary
bus called the System Maintenance Bus (SM-Bus).

During 1985, however, several European companies formed a working group to attempt
to standardize an IC-to-IC serial scan test bus. The main drivers were increasing test
cost, incompatible test features and the reduced physical access of high density designs.
This group became known as the Joint Test Action Group (JTAG). The architecture of
the JTAG bus was influenced by a test bus proposed by TT. This bus was then submitted
to the IEEE for sanctioning and standardization and is known as the D5EE 1149.1,
Standard Test Access Port and Boundary Scan Architecture. Before passing
standardization, this bus went through several changes, including inputs from military and
systems vendors to incorporate capabilities of the VHSIC ETM-Bus. This standard was
passed in February, 1990.

The IEEE 1149.1 test bus provides a standard for boundary scan for device
manufacturers as a way to offset testing difficulties predicted for board designs that used

1-4

circuitry, miniaturized packaging and advanced interconnect technology. Other device
level testability features may be interfaced to IEEE 1149.1 as depicted in Figure 1.1.3.

EVENT
QUALIFICATION

INTERNAL SCAN
o LSSD
o SCAN PATH

PSEUDORANDOM
PATTERN

GENERATION

IEEE 1149.1
TEST BUS
TAP-Test Access Port
TCK-Test Clock
TMS-Test Mode Select

BOUNDARY
SCAN
CELLS

INTERNAL
LOOP-BACK

CROSSCHECK
(SILICON

BED-OF-NAILS)

PARALLEL
SIGNATURE
ANALYSIS

BUILT-IN
SELFTEST

IEEE 1149.1
TEST BUS
TDI-Test Data In
TOO-Test Data Out

Figure 1.1.3. IEEE 1149.1 Interfaces to Device BIST

New device level test bus standards are emerging from the framework established by the
IEEE 1149 committee. The Extended Digital Serial (PI 149.2) and Mixed-Signal
(PI 149.4) test buses hold much promise. Extensions to the IEEE 1149.1, such as design
and fault emulation, are just beginning to emerge as viable solutions. And, the standards
for support languages (e.g. BSDL, SVF, etc.) and the test bus automation tools are
coming available. The integration of test into the design process via Ht will have a major
impact on the supportability of tomorrow's weapon systems.

1.2. IEEE 1149.1 / Joint Test Action Group (JTAG).

1.2.1. Overview and Intended use.

This standard defines a test access port (TAP) and boundary-scan architecture that can be
implemented in integrated circuits (IC) to provide a method of testing interconnections in
digital printed circuit boards or multi-chip modules.

The need for this standard was driven by technologies such as high-density integrated
circuits, surface-mount packaging, and conformal coating of printed circuit boards. These
technologies hinder traditional in-circuit test approaches.

1-5

1.2.2. Current Status.

This standard was approved as IEEE standard 1149.1 on February 15, 1990 and is
designed into many commercial and defense projects.

Support by numerous hardware and software products shows its wide acceptance: Many
major semiconductor vendors are marketing IEEE 1149.1 compliant chips, including
controllers, memories, digital signal processors (DSP), buffers, latches, transceivers, bus
monitors, microprocessors, specialized test logic, ASICs, FPGAs, etc. Both
semiconductor (SC) and computer automated engineering (CAE) vendors have designed
software tools supporting the standard.

1.2.3. Interface/Number of Pins.

The minimum number of wires/pins required by the standard is four, but an optional test
reset wire/pin may be used.

TCK Test ClocK synchronizes bus operation

TDI serial Test Data In pin accepts serial data

TDO serial Test Data Out pin supplies serial data

TMS Test Mode Select controls the state of the test bus

TRST optional Test ReSeT, when low, asynchronously resets the
TAP to Test Logic Reset and places the boundary scan
register in normal operation mode

CirculM

TDI TDO T

Circuit 2

Dl TDO

Circuit 3

TDI TDO

mi

k k i i I L i i i i i i i U L i

r 1

TMS
TCK

.. Tnn

r 1 f 1 r i

■^ "•"

\ r i r 1 r 1 r 1 r
TDO TDI

Circuit 4

TDO TDI

Circuit 5

TDO TDI

Circuit 6

Figure 1.2.3-1. IEEE 1149.1 Ring Connection

1-6

Figure 1.2.3-1 shows a ring connection, which is the typical and intended style for this
bus. A ring is formed by daisy-chaining TDI and TDO between ICs, while the control
signals, TMS, TCK and, TRST if used, are bused out to all the slaves on a ring from the
master or controlling source. A ring has two shortcomings: A fault on any ring
connection will disable the entire bus; and, the scan path can become exceedingly long.

A star configuration, as shown in Figure 1.2.3-2, is an alternative style for this bus. It
requires a separate TMS line for each target slave. Each target in the star is "enabled" by
activating its associated TMS line. All TDO signals returning from the slaves may be
joined, because TDO is tristated whenever shifting is not being performed. This style is
tolerant to faults that effect the ring style.

In either configuration, only one TRST line is necessary to be fanned out to all slaves.
TRST is highly recommended, because synchronous reset, through TMS and TCK, can
take up to five clocks. Five clocks can be a long time if bus pins, controlled by the
boundary scan register, are driving opposite logic levels. Please note that a power-up
reset circuit, if available, may be included in an IC to reset the test logic asynchronously
without a TRST pin.

The standard requires TMS, TDI and TRST to be pulled up to logic one inside the IC,
because logic one is a safe value for each of these signals. A maximum of five consecutive
logic ones clocked on TMS forces the TAP to Test Logic Reset. All ones clocked into
the instruction register through TDI select the BYPASS instruction and normal operation
of the IC. A high value forces TRST to be inactive. It is expected that TCK will be
handled as a clock during board layout, i.e. properly routed and terminated, to maintain its
integrity and to present a stable level if the TCK source is removed.

Circuit 1

TDI TDO

Circuit 2

TDI TDO

Circuit 3

mi TDC

TDI

ist

i n A

1—

i n ii i

t—

k a

— TDO v i
^ TMS BUS a .. i k a

TCK

ID (A

i-
r i ir i r \r \

*Si

1—

r i r ir i r
TDO TDI

Grcuit 4

TDO TD

Circuit 5

TDO TD

Circuit 6

Figure 1.2.3-2. IEEE 1149.1 Star Connection

1.2.4. Architecture.
Figure 1.2.4-1 shows the minimum required architecture. The primary blocks are:

• TAP controller,

• instruction register,

1-7

• TOO selection,

• bypass register and

• boundary scan register.

Each block is described in the following paragraphs.

The TAP controller directs instruction scans, data register scans and test execution as
described in the "Protocol" section. The italicized portions of the following text indicate
states in the protocol diagram.

The instruction register controls data register selection and test operations, defined in
"Instructions supported". It is loaded by shifting data in from TDI under control of the
TAP. The instruction register must contain at least two bits, but has no limit on the
maximum number of bits, although eight bits usually will suffice. During capture-IR, a
logic one is preloaded into the least significant bit (LSB), and zero is loaded into the bit
next to the LSB. (Note that the LSB is closest to TDO and that the most significant bit
(MSB) is nearest to TDI.) Preloading both a one and a zero into each instruction register
enables a flush test of the instruction path of the ring to check for both stuck-at-zero and
stuck-at-one in the scan path. During update-IR, a latch either on the instruction register
outputs or on its decoded outputs is loaded.

CORE APPLICATION LOCK

JJ

BYPASS REGISTER

DECODE IOC1C

INSTRUCTION REGISTER

PR CLOCK AND CONTROLS

IR CLOCK AND CONTROLS

Figure 1.2.4-1. IEEE 1149.1 Architecture

TDO selection has two stages as shown in Figure 1.2.4-2. The outer stage, next to TDO,
selects between the serial outputs of the instruction register and the data register path. It
is controlled solely by the TAP. The inner stage selects the scan output of the selected
data register, according to the value in the instruction register.

1-8

After reset, the TAP will be in the Test Logic Reset state and the instruction register will
contain the BYPASS instruction. The BYPASS instruction causes the path between TDI
and TDO during a shift-DR to select the bypass register. During the capture-DR state,
the bypass bit preloads with logic zero. If the controller sends only ones out on TDO, the
number of zeroes received before the first one is returned should indicate the number of
slaves in the ring. The bypass bit needs no latch and is unaffected by the update-DR state.
The main purpose of the bypass bit is to bypass one or more ICs during shift-DR to
improve serial access to other ICs on the ring.

The boundary scan register is a shift register structure which forms a test collar around
the ICs input and output signal pins. The register is composed of boundary-scan cells
(BSC), one cell for each device functional pin and additional cells for each control output.
BSCs are placed between the I/O buffers and the internal core logic of the device. In this
position, they can either sample the state of the I/O for observation or drive the I/O to a
known state for control. The BSCs are interconnected to form a serial bus (i.e. scan path
or shift register) between the host devices' TDI pin and TDO pin. Data is shifted in and
out of the cells under control of the TAP and the instruction. For a boundary scan
instruction, such as EXTEST, SAMPLE or INTEST, the boundary scan register will be
active and connected between TDI and TDO during shift-DR. Many variations of the
boundary register are possible within the standard. As a minimum:

• all functional inputs, from uni- or bi-directional pins should be observable, and

• all functional signals which directly control the level or strength of outputs,
whether two-state, three-state or bidirectional pins, should be controllable.

SCAN PATH REGISTER 2 -3

SCAN PATH REGISTER 1

DEVICE IDENTIFICATION REGISTER

BOUNDARY REGISTER

BYPASS REGISTER

n SELECTS FROM
INSTRUCTION DECODE

INSTRUCTION REGISTER

SELECT FROM TAP

<%

3
TO TDO LATCH

Figure 1.2.4-2. IEEE 1149.1 TDO Selection

1-9

A generic cell, depicted in Figure 1.2.4-3, which both observes and controls can be used
for inputs or outputs. The elements of the generic cell are:

• an input multiplexer (mux) to select between observation or shift data,

• a flip-flop (FF) to be linked in the scan chain, which clocks data from the input
mux,

• a latch on the FF output, which updates test control data at the end of each
scan and

• an output mux to select between test control data from the latch or functional
data.

The standard requires that test data presented to the system pins change only during
update-DR. If test control values are shifted into the boundary register, a latch stage is
needed to hold the output pin data stable until update-DR. Of course, during normal
operation of the IC the system controls all functional (non-test bus) signals. Optional or
user-defined tests generally require additional circuitry within the boundary register.

DIN

TDI

FROM TAP &

INSTRUCTION

DECODE

► TOO

DOUT

Figure 1.2.4-3. IEEE 1149.1 Generic Boundary Register Cell

Optional logic. Many forms of circuitry may be added to the minimum architecture, but
they typically take the form of extra data registers. One optional data register defined by
the standard is the device identification (ID) register. When the device ID register is
implemented, the controller can confirm or interrogate the type of part(s) on the ring. ID
data includes the manufacturer, part number and version or programmation of a
component. It must be 32 bits long, and its LSB (first bit shifted out) must preload with
logic one. It is accessed through the IDCODE instruction. For devices without an ID
register, the IDCODE instruction is decoded as a BYPASS. Therefore, if the first bit
received from a data scan, when all devices are loaded with the IDCODE instruction, is a
logic one, the next 31 bits will identify the first component. Then, the 33rd bit returned
will start the next IC. Alternately, if the first bit is a zero, that device is in bypass, and
data from the next chip will start with the second data bit returned. So, the controller can
blindly determine what types of parts are on the ring, even when only some have
identification. However, adding the ID register is highly desirable. If gate count is
questioned, consider this: It is perfectly legal to share logic for the device ID register with

1-10

another register, such as the boundary register, as long as the contents of the output latch
of shared cells is not changed.

All other test data registers are design-specific. Their access must conform to the
standard, and their length must not change for different instructions. Otherwise, then-
design is unrestricted. Design-specific test data registers generally enable either control of
specialized test functions or access to internal functional data. Control registers may
contain individual control bits, expanded commands, values to program a linear feedback
shift register, counter values, counter control, test protocol, seed data, etc. The wide
range of special functions demonstrates the flexibility of test access available through the
test bus. Operation of the tests listed for control register data can be quite elaborate, and
involve surrounding components for board level testing. Testing core logic can be
enhanced simply by adding scannability to any number of internal functional registers. The
extension section on internal scan covers this topic.

1.2.5. Protocol.
The sixteen-state TAP, as stated in the interface section, is controlled synchronously by
TMS and TCK, and may be reset asynchronously by the optional TRST signal. The TAP
state diagram, defined by the standard, is shown in Figure 1.2.5. The loopbacks in the
diagram identifies six stable states. These stable states allow

• resetting the test logic (Test Logic Reset /STRAP),

• remaining in idle or running tests (Run Test/Idle),

• scanning a data path (Shift-DR),

• scanning the instruction path (Shift-IR),

• pausing during a data scan (Pause-DR), or ^

• pausing during an instruction scan (Pause-IR).

The test logic reset state is described in the Interface / Number of Pins and the
Architecture sections.

The scan states allow serially accessing the selected data register scan path. For shift-IR,
the scan path always is the instruction register. For shift-DR, the scan path will depend on
which data register is selected by the current instruction, as stated in the TOO selection
block of the Architecture section. Any non-selected scan path will hold its value,
excluding the bypass register.

1-11

1 CTjestLogic ResetV-

0 Ql Run-Tesyidle ^ -^Select-DR-Scan ^—-

, 1° [
If Capture-DR ")

«(] Select-IR-ScarT)-^ 1

< Shift-DR XD'
1

Exit1-DR ^-L

,. 0

(^ Pause-PR XJ o

(Exit2-DR "~)

(update-DR~\-

Capture-IR }

-^ Shift-IR y^} o

^-^ Exitl-IR y~1

c Pause-IR X»

-Z

^ Exit2-IR }

I 1
^ Update-IR~^-

1

Figure 1.2.5. ffiEE 1149.1 Test Access Port Protocol

During the run-test/ idle state, the test loaded into the instruction register may execute.

The pause-IR and pause-DR states enable pausing data tranfer between the test bus data
and slave. For example, a microprocessor used to run a scan test may force the TAP to
pause anytime during either (data or instruction) scan, if it needs extra time to examine or
store incoming data or fetch the next outgoing data.

Four of the temporary states, capture and update for both data and instruction scans, are
also critical. During capture, status or test result data may by preloaded into the
instruction register or the selected data register, respectively, prior to scan. During
update, data in the shift register is parallel loaded into output latches. An end-of-scan
latch-update prevents control data from rippling through the circuit during scan.

At least one prior bus, VHSIC ETM, also specifies boundary scan, but the protocol is
quite different Previous buses provide fewer states and require multiple control signals,
at least two. In some cases, a data line doubles as a control signal. The protocol of the
state machine inside the IC, prevents illegal bus opertions. For example, it is impossible to
change directly from shift-IR to shift-DR, because the protocol of the state machine does
not allow such a transition.

1.2.6. Instructions supported.

The boundary scan logic is responsive to control input from the TAP controller and the
instruction register decode to execute a variety of standard and user definable test mode
instructions. The standard defines 7 public instructions, of which only 3 are required.

1-12

BYPASS Required

EXTEST Required

SAMPLE/
PRELOAD

Required

INTEST Optional

RÜNBIST Optional

IDCODE Optional

USERCODE Optional

BYPASS.
BYPASS is a required instruction. During BYPASS, the boundary test logic is disabled;
input and output signals flow freely through the test collar, enabling normal operation of
the IC. Functional data is neither controlled by the boundary cell output muxes nor
observed through their input muxes. BYPASS is comparable to a no-operation "NOP"
instruction, because no test is performed.

As defined in the architecture section, during BYPASS, the bypass register is selected
during shift-DR operations. Putting a device in bypass mode effectively removes it from
the data scan path, by limiting its scan path to one "inert" bit

EXTEST.
EXTEST is a required instruction. During EXTEST, the boundary test logic is enabled
and placed in its external test mode; the test collar provides an input response and output
stimulus structure to enable testing of interconnects between multiple board-resident ICs,
via serial access operations. The response is captured through the input muxes of
boundary register cells on IC inputs; and the stimulus is provided through the latch and
output mux combinations of boundary register cells on IC output level and control signals.

EXTEST is a boundary scan instruction, and, as such, activates and places the boundary
scan register in the path between TDI and TDO during shift-DR. Response data is loaded
during capture-DR and stimulus data is output during update-DR. The response data
scanned out is from the stimulus data loaded during the previous scan operation. Thus,
the first scan returns old data as it loads the first data to apply, and the final scan loads
"dummy" data as it reads the last data to observe.

SAMPT.E/PRET.OAD.

SAMPLE/PRELOAD is a required instruction. When the boundary test logic is enabled
and placed in its non-intrusive sample mode, the test collar allows the IC to function while
data entering and leaving the IC is sampled and shifted out for examination via the
boundary scan register. For the sample function, it does not necessarily matter what data
is scanned into the boundary register, because the sample is meant to observe. However,
the preload function is intended to place the boundary register in a predetermined state for

1-13

later tests. The two functions can be executed simultaneously, if that suits the purpose of
a given test.

SAMPLE/PRELOAD is a boundary scan instruction, and, as such, activates and places the
boundary scan register in the path between TDI and TDO during shift-DR. Sampled data
is parallel loaded during capture-DR and is shifted out during shift-DR, while preload data
is shifted in.

INTEST.

INTEST is an optional, but recommended, instruction. When the boundary test logic is
enabled and placed in its internal test mode, the test collar provides an input stimulus and
output response structure to enable testing of the ICs interior logic, via serial access
operations. The response is captured through the input muxes of boundary register cells
on IC output level and control signals; and the stimulus is provided through the latch and
output mux combinations of boundary register cells on IC inputs. The standard requires
control of all non-clock input pins. Control of clock signals may be delegated to the board
or system design. INTEST may operate identically to EXTEST, such that the only
difference is how the controller views the test data, unless the chip requires special test
logic to enable single step operation. During INTEST it is allowable to globally tristate all
3-state and bidirectional pins on the chip, to guarantee it remains isolated from
surrounding devices, regardless of the values loaded into scan latches during update.

INTEST is a boundary scan instruction, and, as such, activates and places the boundary
scan register in the path between TDI and TDO during shift-DR. Response data is loaded
during capture-DR and stimulus data is output during update-DR.

RIJNBTST.

RUNBIST is an optional instruction. Using this test mode, the ICs interior logic can be
quickly verified using user-defined BIST circuitry and algorithm, reducing, or even
eliminating, the need for time consuming single-step testing through INTEST. Because
RUNBIST does not single-step, it may perform at-speed testing to check not only the
logical function, but also timing through delay paths inside the IC. Like INTEST, the
outputs must be controlled to safe values throughout the test. The BIST controller is
responsible for initializing data prior to running the test. If the boundary register is used
for RUNBIST, it may be setup with a SAMPLE/PRELOAD instruction. The BIST
controller also is required to stop the test automatically, without external input. Seiftest
results shall be loaded into a selected data register (possibly the boundary register) during
capture-DR.

RUNBIST implementations are possibly as diverse as ICs incorporating this instruction,
but their operation from the TAP is very regular, as required by the standard. See the
BIST extension section.

1-14

mconF, and ITSERCODE.

The IDCODE instruction is described as part of the optional logic under the architecture
section. A companion instruction to IDCODE is USERCODE. When a user-
programmable device contains a device identification register, and its programmation
cannot be determined through other test logic, the USERCODE instruction may be used.
When executed, USERCODE loads a binary code, selected by the component designer,
into the device identification register, and activates this register to be scanned out for
observation of the programmed function.

Through the addition of new instructions and internal scan registers or test logic almost
limitless test functions can be performed. Since all the test capabilities provided by the
boundary scan test standard are enabled via the TAP interface, they can be reapplied after
the IC has been embedded in the system. Thus, tests created at each level of development
can be reused through the entire product hierarchy and life cycle.

1.2.7. Application.
Several features of IEEE 1149.1 make it easy to apply powerful test techniques:

• Virtual test points enable partitioning circuits at any level.

• Test bus interface and structures are compatible with many test methods.

• Test bus interface enables reuse of test throughout hierarchy and life cycle.

When applying the test bus to a project, a few considerations should be made during the
process of designing test logic and test programs.

BOUNDARC

SCAN CEILS

Figure 1.2.7-1. Pins-In and Pins-Out Testing using IEEE 1149.1

Virtual test points and partitioning.

Previous industry testing of populated boards was performed by test fixtures utilizing a
"Bed-Of-Nails" test approach. These test fixtures were costly and reacted to change in
board designs very slowly. IEEE 1149.1 replaces these expensive test fixtures by utilizing
a concept of "Virtual Test Points" for Pins-In and Pins-Out testing.

1-15

Pins-In testing (associated with INTEST) is accomplished by loading test patterns at
device inputs, driving data across device core logic, and capturing patterns at device
outputs. Pins-In testing verifies IC core logic. Pins-Out testing (associated with
EXTEST) is accomplished by loading/driving test patterns at device outputs and capturing
patterns at the next device's inputs. Pins-Out testing, thus, checks the pin-to-pin wiring
interconnects between devices on a board. Figure 1.2.7-1 illustrates the concept of pins-
in/pins out testing. Note that virtual test points are not subject to the potential noise
problems that may be caused by additional etch and pins of test points.

Virtual probing does not eliminate the need for some sort of At-Speed testing to verify the
interactions between devices executing at their normal speed. It is preferred that at-speed
testing be performed by Built-in Self-Test (BIST) applications. BIST is also advisable in
place of Pins-In testing of IC core logic, due to the amount of test patterns and test time
generally required for INTEST.

By using generic BSCs, isolation of the device can be achieved. Besides isolating the chip
from the board or system, use of IEEE 1149.1 compatible components enables
partitioning a system into more testable subunits. An illustration of module functional
partitioning to increase testability is shown in Figure 1.2.7-2.

PROGRAM

CODE/

PATTERNS

SCAN

BUS

CTRLR

UP

CLUE

LOGIC
ASIC

C/OOECOOG

I/O

ASIC

_' Independently Testable Functions

Figure 1.2.7-2. Module Partitioning for Testability

Virtual test points can be created by scan cells other than BSCs. A BSC is a special, albeit
required, type of scan cell. The scan cell is the basic building block of the IEEE 1149.1
architecture. When scan cells are used internal to the ASIC, internal nodes also become
virtual test points. By partitioning the ASIC into functional blocks, and by properly
placing scan cells around these partitions, sections of the circuit may be tested separately
or in parallel. Figure 1.2.7-3 illustrates this concept

1-16

INPUTS ■

INPUTS •

TD1-

Block
1

Block
2

Block

3

Register

Complex ASIC

► TOO

> OUTPUTS

> OUTPUTS

Figure 1.2.7-3. IC Partitioning For Testability

Test Methods Achieved thrmifh ITCKF, 1149.1.

The IEEE 1149.1 boundary-scan standard provides designers with capabilities that will
make their digital designs more testable and producible. Virtual test points can be used
along backplanes, around processors or memory, around functional blocks and
surrounding analog logic. Use of scan in each case has special considerations and benefits.

Backplane Testing

Until recently, typical board to board testing relied on Built-in-Test to detect backplane
faults; open etch, faulty connector pin conditions, and short-to ground. The results were
not always good because backplane signals were controlled and observed through
functional logic and it was difficult to limit the size of ambiguity groups. However, with
the emergence of IEEE 1149.1, backplane testing for these board to board faults can be
achieved with favorable results.
By surrounding the bus interface of a board with boundary-scan cells, as illustrated in
Figure 1.2.7-4, backplane faults can be effectively detected and isolated. Functional logic
is not used to test the external signals which eliminates that logic from the ambiguity
group. Each board in turn can drive logic signals onto the backplane while the other
boards within the system receive the driven logic values.

1-17

PWB #1 PWB #2 PWB #3 PWB #1 PWB #2 PWB #3

1 1 | | 1 1 | 1 | | 1 1
tfwywn ' L FAMAWMif * 1 MAWAWJJ '

1
1 MMMMUn ' LW.W.WJJ «MMMMM '

» I
Backplane ^7

Open-Etch

Condition

\
Backplane

Backplane OpenCircuit Fault

Short-toGround
Condition

Backplane Short to-Ground Fault

Figure 1.2.7-4. Backplane Testing using IEEE 1149.1

Processor and Memory Testing using IEEE 1149.1

Microprocessors with embedded IEEE 1149.1 allow for testing interfaces to which they
are connected. Memory access and I/O interconnect testing is enhanced through proper
positioning of scannable cells within the board design. Typically, embedded tests begin
using a kernel (or start-small) approach which requires a significant amount of hardware
(processor, memory, etc.) to be functional in order to execute. Boundary scan can be
used to reduce the kernel to a smaller ambiguity group and therefore result in better
isolation.

Large memories can be partitioned into more testable arrays, thus allowing for faster test
times and better isolation of each memory partition. This is illustrated in Figure 1.2.7-5.
Boundary-scan cells positioned within ASICs provide for controllability and observability
of memories which otherwise would not be accessible. Scan cells on memory address,
data, and control interface logic allows for reading/writing of memory locations without
processor involvement It is not recommended that all memory cells be verified via
boundary scan, only the address, data and control signals needed to access the memory.
Memory testing via IEEE 1149.1 devices could be further enhanced through incorporation
of pattern generation and data compaction devices within the board design. Otherwise,
conventional processor-based memory test algorithms should be used to verify memory
cells or contents.

1-18

IN—3 •

TDI-

ASIC FUNCTIONS

PRPC/SCAN
PRPG/TOGGLE

COMPARE

ADDR

—>

CTRL

EMBEDDED
RAM
CELL

1
DATA

>IC

A

r>lN

K FEEDBACK

OUT IN-5'

^. PASS/
FAIL

->TDO TDI-

ASIC FUNaiONS

PRPC/SCAN

ADDR

CTRL

EMBEDDED

ROM
CELL

PSA

DATA

—>|

l
■->OUT

R
GOOD

SIGNAL

^PASS/
FAIL

->TDO

TESTING EMBEDDED RAM TESTING EMBEDDED ROM

Figure 1.2.7-5. Testing Embedded Memory

Board Functional Logic Testing.

Within many complex designs, composed of VLSIs and ASICs, exists discrete logic which
mates functional partitions on the board. Very often this discrete logic does not include
IEEE 1149.1 technology. Testing this logic can be as simple as surrounding this discrete
logic with scannable devices, scanning test vectors into the boundary-scan device, driving
the vectors across the logic, and capturing the resultant data at the boundary of the next
scannable device. Another method for testing discrete logic is the use of scannable
devices which perform pattern generation and data compaction applications. Using these
devices in the above scenario results in faster test execution.

Analog Testing.
The primary thrust of the IEEE 1149.1 boundary-scan architecture was to reduce the
complexity of testing digital circuits. However, the use of boundary-scan also has benefits
in a mixed analog/digital environment By providing scan-based logic between digital
signals received from or supplied to analog logic, improved testability/ isolation between
analog and digital circuitry can be accomplished. This is illustrated in Figure 1.2.7-6.
Care must be taken to ensure that signals driven to and from the A/D and D/A logic do
not ripple during shifting of the boundary scan register.

1-19

Figure 1.2.7-6. Testing Analog logic

Hierarchical Testing.

ASIC Verification and Production Testing.

Current design and manufacturing processes are approaching a point where "in-circuit"
probing of components is no longer feasible. IEEE 1149.1 enhances the designer's ability
to verify a design by allowing access to internal nodes and embedded test features. Access
to these test features can be accomplished via low-cost debug/test stations which can be
PC-based (see Figure 1.2.7-7). Software tool-sets employed on these stations provide test
access, thus allowing faster debugging and validation of designs. The IEEE 1149.1 test
bus architecture improves the device production cycle by allowing simpler, inexpensive
and portable test fixtures and re-usable tests. Test vectors used during design verification
can be reused during production testing; thus reducing production test development costs.

Chip or Board under Test

TAP Bus Interface Card

DDD[]
D-DDD

, ■ ■ ■

ft

Software

DDDD
DDDD
DDDD

Workstation or PC Standard Low-Cost
Fixture Unit

Low-Cost Debug/Test Station

Figure 1.2.7-7. PC Based Test Stations

1-20

Board Verification and Production Testing.

IEEE 1149.1 provides a method to observe and control circuits without the need for clips
or probes, thereby making board verification easier. Via the IEEE 1149.1 test bus
interface the designer is able to control the state of the design, setup specific conditions,
and observe how the design responds to test stimulus; all under software control. Portions
of the design can be individually tested in the absence of other portions, thus allowing
early verification of the design prior to making final design decisions.

With the emergence of IEEE 1149.1 technology, production testing of populated boards
can take a new direction, away from expensive test fixtures, and toward less expensive
personal computers and desktop fixtures (illustrated in Figure 1.2.7-8). Production testing
can take advantage of the improved visibility and control, at-speed testing, and fault
detection/isolation capabilities of IEEE 1149.1 to implement a low-cost manufacturing
defect testing program. This low-cost testing program can be used for subsequent board
level tests in the factory, field, and depot.

aRcurriNHRCONNKT

Figure 1.2.7-8. Board-Level Testing System using IEEE 1149.1

Process.

Design Concerns.

When a design is considering the use of IEEE 1149.1, whether for system, module, or
device, consideration must be given to the architecture of the scan path. Scan bus design
must be a structured, parallel effort, and one which fosters close cooperation between the
design and testability engineers.

Consideration must be given to what functional blocks of logic inside an ASIC will be
tested by internal scan, what functional blocks of logic on a board will be surrounded by
IEEE 1149.1 devices, number of parallel scan paths required, which circuits will be on
each scan path, and what signals need to be controlled by IEEE 1149.1.

1-21

Board Design.

In most cases, the normal buffers and transceivers within the design can be replaced with
IEEE 1149.1 scannable cells, thus providing controUability and observability of each
functional block. I/O interfaces, memory, address, data, and control signals can also be
surrounded by IEEE 1149.1 scannable cells, and thus allow testing of these elements via
the board embedded IEEE 1149.1 test bus.

Medium-to-high complexity modules should have adequate partitioning to allow
independent testing of major logic functions. In addition to performing buffer, latch, or
transceiver functions, scannable cells can be controlled via the IEEE 1149.1 test bus to
load or sample signal states, thus enhancing partition isolation, and reducing ambiguity
among functions. By proper module design partitioning, provided by IEEE 1149.1
scannable cells, module failures can be detected and isolated with less probing or part
substitution, and therefore can result in repair and replacement savings.

Clock skew.

While the standard is designed to prevent hold time errors at the board or system level, it
is still recommended to route TMS and TCK together during board layout. Potential
timing problems inside the IC are not covered by the standard and must be solved by the
engineer. Several approaches are commonly used for shift register design.

• For the boundary register, which often is the longest, the clock can be routed
from the BSC nearest TDO to the BSC closest to TDI. However, this may
require manual intervention during IC layout.

• Some ASIC libraries offer special scan cells with built-in delay on the shift
input. These cells work well and their use may be completely automated.

• In a master/slave flip-flop, used as a scan cell, the master side would latch the
serial input on the rising clock edge and the slave side would latch the serial
output on the falling edge. The master/slave flip-flop effectively uses the same
technique as defined by the standard for the board level.

• If users build shift registers from ASIC library hard macros, they may consider
multi-bit shift register macros, which both minimize clock skew and, through
buffering, lower clock loading.

While use of a serial test approach magnifies the hold time problem, it is not new as
reflected by the many solutions available.

ASIC Simulation Concerns.

ASIC design simulation is more easily achievable within designs which are captured
hierarchically. Test patterns used during the simulation process should be developed for
application at the functional level. These test patterns then become transferable to higher
levels within the hierarchical test structure. When generating test patterns to be applied at
the ASIC level, insure the patterns do not apply test stimulus to the normal I/O pins while
at the same time applying test stimulus to the scan test cells. When they are applied
together your responses may be unpredictable.

1-22

Vector Generation.

ASIC test stimuli consist of parallel and serial test vectors; parallel test vectors for testing
the normal ASIC operations, and serial test vectors for testing the IEEE 1149.1 test logic.
The parallel test vectors should be generated first in order to verify that the test logic is
not interfering with the normal ASIC operations.

1.2.8. Bus timing.

Clock frequency. The simplicity of the protocol requires little setup time for decode.
However, to prevent hold time errors, TDO and TMS-out are output on the falling edge
while TDI and TMS-in are latched on the rising edge. Forcing the output delay plus the
input setup times to fit within half a clock cycle effectively halves the maximum possible
frequency. The standard does not specify a maximum frequency, but does stipulate that
the interface must function when TCK is halted.

Throughput. Once a scan is started, it may continue for as many clocks as necessary.
There are no packet constructs with time-consuming frames. As long as the controller can
monitor and provide data during shift operations, it never needs to force the bus to pause.

1.3. IEEE P1149.2 Extended Digital Serial Subset.

1.3.1. Overview and Intended Use.

The goal of the PI 149.2 standard is to develop a test architecture supporting test and
diagnosis of digital devices at all levels with the following characteristics:

• Implementation is flexible, and requires few structures.

• User may add test features easily.

• Limits impact on performance or cost of design.

Generally, the PI 149.2 working group wants this standard to support boundary scan,
internal scan and user-defined tests, while imposing minimal test architecture
requirements, i.e. limiting gate count.

1.3.2. Current Status.

The PI 149.2 working group is still active, but the proposal is not ready for ballot. The
latest draft is number 0.2 and is dated February 15, 1991. Currently, both the 1149.1 and
PI 149.2 working groups are examining the possibility of buses coexisting. The direction
is towards one or more test pins separate from the buses, which would select the active
bus.

1.3.3. Interface/Number of Pins.

The minimum number of wires required by the standard is five; but it is not fixed.

1-23

TCK 1 or more
pins

Test ClocK. TCK may comprise multiple phases (signals),
but TCK must be separate from the system clock.

TDI 1 pin serial Test Data Input

TOO 1 pin serial Test Data Output

STM 2 or more
pins

Select Test Mode inputs select the test function. STMO and
STM1 are required, but additional inputs are allowed.

Edge-Triggered or Multi-Phase TCK. Both the scan path and BIST logic may be
clocked by either an edge-triggered or a multi-phase test clock (TCK). A possible reason
for allowing multi-phase clocking may be compatibility with Level Sensitive Scan Design
(LSSD) on internal scan paths. If a multi-phase clock device adheres to the proposed
standard, it may be linked in a chain with an edge-triggered clock device. The controlling
source will need to generate both types of clocks in proper synchronization. Whether
multi-phase or edge-triggered clocking is selected, this draft of PI 149.2 still requires TCK
to be different from the system clock.

1.3.4. Architecture.

I/O pin I/O pin I/O pin I/O pin

TTTT
TOO

- OUTPUTJDRIVE

-INPUT.SAMPLE

-Hl-Z

SEIECT_BYPASS

£-
Figure 1.3.4-1. Minimum PI 149.2 Architecture

1-24

Four major elements comprise the minimum PI 149.2 architecture, as described in draft
0.2, dated February 15,1991:

• I/O-Register

• Scan Access Port (SAP)

• Implementation Detail Register (DDR)

• Bypass Register

They are shown in Figure 1.3.4-1.

I/O-Register. In the draft version, boundary scan is achieved through an I/O-register.
The 1/O-register, like the IEEE 1149.1 boundary register, is meant to test interconnections
between ICs on a board or multi-chip module. Unlike a boundary register, an 1/O-register
may share register cells with the core logic of the device. Because IEEE PI 149.2 does
not require the 1/O-register cells to be dedicated test logic, these cells cannot perform test
functions without disrupting normal operation. Note that the data path still gains a
propagation delay, through the mux to select between normal or shift data. Also, because
the parallel-update stage is not required, output pin values sourced by the I/O-Register
may toggle during register shift operations. When toggling is a problem, PI 149.2 frees
the user to choose any workable solution, with or without latches.

SAP. Test control will come from a simple decode of two or more Select Test Mode
(STM) control input pins. Letting n be the number of control pins, the SAP
combinationally decodes n to 2n. Eliminating the TAP state machine and sharing
functional logic are planned to reduce gate count overhead. See Figure 1.3.4-2.

1-25

from SCAN-OUT
of last l/Ocell

V tothe
l/Ocells

Figure 1.3.4-2. Logic Diagram for the SAP and test control logic, including the IDR and
the Bypass Register

IDR. The Implementation Detail Register (IDR), unlike the 1149.1 Device Identification
register, is required, is variable length and is scanned in series with the I/O register. The
IDR contains up to three fields, a 1-bit EXTension, 31 Device Identification Bits (DIB)
and up to 256 bits in the User_register, comparable to 1149.1 User_code. If the DIB field
is absent, the EXT bit preloads with 0, like the bypass bit of 1149.1, and the length is 1
bit. If the DIB field is present, the EXT bit preloads with 1, just like the LSB of the
1149.1 ID register, and the total length is 32 bits plus the length of the User_register. The
length of the User_register can be interpreted from the Device Number subfield in the
DIB. The IDR may provide an extra function by sourcing test control data.

Bypass Register. The PI 149.2 Bypass register is 2 bits long. It preloads with "01",
similar to the 2 least significant bits of the 1149.1 instruction register. Here, the bypass
register is used for continuity testing done with the instruction register in 1149.1.

Other Scan Registers. Other scan registers include all but the I/O scan register.
Required elements such as the IDR and the Bypass register fall in this group. Optional
scan registers may be created from internal flip-flops or latches, when these are modified
for scan access. Multiple internal scan rings may be accessed in parallel with
corresponding pairs of TDJ/TDO pins for each, or they may be switched into a single pair
ofTDI/TDOpins.

1-26

1.3.5. Functions Supported.
PI 149.2 has neither protocol nor instructions, but it does have required functions, which
are decoded from the SIM inputs.

STMl/
STMO

Test mode Required Functions Optional Functions

0/0 I/O-DRIVE/
SAMPLE

output-drive,
1/O-sample,
bypass

input-drive

0/1 USER none (and bypass) update,
serial internal-scan,
special user functions

i/o I/O-SCAN I/O-scan,
high-impedance

parallel internal-scan

1/1 SYSTEM regular system
(and bypass)

1/O-sample,
parallel internal-scan

Support of additional functions requires additional STM inputs.

1.4. IEEE P1149.4 Mixed-Signal Test Bus Standards.

1.4.1. Overview and Intended use.

The intention of PI 149.4 is to define a mixed-signal test bus for use at the device and
assembly levels enabling control and observation of analog signals and supporting built-in
test structures. Use of the standard should shorten test development time and lower test
costs, but raise test quality. PI 149.4 does not plan to solve all mixed-signal test problems.

1.4.2. Current Status.
The working group has developed a strawman approach and divided the research among
its members. The strawman resulted from a combination of proposed frameworks and a
determination that interconnect testing is a primary concern. The level of interest and
participation in the current study indicates that a proposal may be ready by the end of
1993 or early 1994.

Currently, requirements are at a high level.

• Address test needs at device and board levels.

• Observe signals.

• Control signals.

1-27

• Minimize overhead.

• Possibly compensate for performance degradation.

• Provide parametric analysis with minimal disturbance of sensitive nodes.

• Be compatible with 1149.1 and other 1149 standards in progress.

Operating procedures. The working group holds quarterly meetings. They have
evaluated technical frameworks presented by working group members for consideration as
methods for mixed-signal test and design-for-test. International Microelectronics
Products (IMP), AT&T and Gould/AMI have shown chip-level frameworks. From these
presentations and inputs from all levels of the mixed-signal market, they have distilled the
general requirements and scope of the test bus. A common framework for board and chip
levels is under investigation by a diverse group, including industry and academia.
Variations and elements of the proposed solution are being examined for specific features
and tolerances needed for a useful specification. New members are sought to expand the
research to insure a comprehensive and viable approach is obtained. When all avenues of
implementation are sufficiently addressed, the issues and alternative approaches will be
compared and condensed into a cohesive standard proposal.

1.4.3. Architectural Elements of Proposed Frameworks.

Presented solutions, which contributed to the strawman, have three main features:

• a 2-wire analog test bus

• digitally controlled switching networks to isolate analog circuitry for tp.st

• some type of in circuit test (ICT)

Analog test fruSt

The 2 wires in this bus have been called:

ATDI
ATDO

AB1
AB2

ASI
ASO

Analog Test Data In
Analog Test Data Out

Analog Bus 1
Analog Bus 2

Analog Scan In
Analog Scan Out

TDI /TOO are compatible with IEEE 1149.1.

These could both be bidirectional signals.

Analog Scan is a misleading terminology.

Whatever they are called, they are effectively the same, but for convenience ATD1/ATDO
will be used here. Only one analog test input is used, because it is impractical to control
multiple analog signals. The variety of waveforms needed to test all types of analog
circuitry and a question of how many inputs is enough drives this decision. Also, it is
reasonable to assume that a functional test can detect board or system failures, so that the

1-28

analog test bus is needed primarily for isolation. Isolation may be achieved with one
stimulus and one measurement channel. ATDO provides a movable virtual probe to
observe one internal signal at a time, until the fault is isolated. EXTEST functions can be
performed on analog pins by connecting ATDI to each analog output pin in turn and
observing the result through the ATDO test point for the input pin on other circuits.
ATDI and ATDO are meant to be driven and observed by an external tester. As a result,
the type of signals provided or measured are limited only by the capability of the ATE.
External ATE should be able to measure parametrics, such as voltage, current, power,
amplitude, phase, frequency, etc.

ATDI

ATOI £>

_£>
ATDO

ATDI
■>

_£>
ATDO

ATDI
">

_£>
ATDO

ATDO

IEEE 1149.1 BUS

Figure 1.4.3-1. Parallel Connection of Analog Test Bus

ATDI and ATDO will be connected in parallel, as shown in Figure 1.4.3-1, and will not be
daisy-chained. If they were daisy-chained, every device's ATDI/ATDO would have to
pass the maximum and minimum parametrics existing on the chain. With a parallel
connection, each device only needs to protect itself from signals outside its tolerances. To
enable merging ATDO from every device, it must be a tristate signal. Tying together
many switches without tristate buffers might slow the frequency response. The standard
must deal with capacitance and resistance at the board level. A solution might be to set
minimum input impedance and maximum output impedance standards at the chip and
board level for the bus, requiring judicious use of buffer amplifiers at inputs and outputs,
to ensure acceptable (and standardized) fan out and fan in capabilities. Input to each chip
from ATDI is buffered to avoid bus loading and capacitance effects. ATDO from each
chip is also buffered to nunimize bus loading and capacitance effects and to nänimize
effects of switch resistance.

1-29

Switching networks.

LEGEND: Open switch —| |—

Closed switch -^^N^-

Figure 1.4.3-2. Minimum Implementation of Switching Network

The analog test bus is useless without a switching network to select signals for control or
observation. The switching network is composed of analog muxes, switches and/or
transmission gates which are controlled by digital signals. A minimum implementation,
shown in Figure 1.4.3-2, would require the functional equivalent of 3 switches and 2
digital control signals for each device pin. (The switch numbers, ASn, correspond to those
used in Figure 1.4.3-3.) On each analog input pin, a double switch, which is controlled by
a single digital signal, will select either the test input or the normal input, but never both or
neither. The buffered output of the double switch may be selected as the analog test
output through a single switch, requiring a single digital control signal. Output pin
switching nearly mirrors input pin switching. Here, the analog test output switch, used to
observe the core analog circuit output, precedes the double switch and buffer combination
controlling the analog output pin. Note that a buffer after the mux prevents mux
resistance from affecting measurement or normal circuit operation.

1-30

ATDI

AH
"4k-
AS6

AS2

H
AS3

B+

\AS4

u i AS1

T" AS5

Gnd

Aln
■4k

AS6 H
AS3

2h J-' AS1

T* AS5

Gnd

ü

< fc

u

AS1

B+

AS4 _]_ AS2

-ft- i-C-
AS5 AS3

Gnd

B+

AS!

-ft-

T
Gnd

B+

AS4]_ AS2

AS5 T AS3

Gnd

■ft-

A01

AS6

h -ft-
AOn

AS6

ATDO

LEGEND: Open switch —j |—

Closed switch -^j'k-

Figure 1.4.3-3. Six-Switch Implementation of Switching Network

A more complex network, shown in Figure 1.4.3-3, requires 6 switches with separate
control signals and does not include the buffers. Table 1.4.3 describes the function of each
switch.
Switches ASA and AS5 function somewhat more like IEEE 1149.1 in that they provide
individual test control values for each signal simultaneously. The benefit of this extra
control must balance or, better, outweigh its overhead. Switches AS2 and AS3 essentially
function the same in both example implementations. So do AS1 and AS6. However, in
the minimum network, AS1 is used only on inputs and AS6 only on outputs. Including
both creates a generic circuit, usable for inputs or outputs.

The final function of the network and also the gates to implement it and the digital logic to
control it must be selected by the PI 149.4 working group. The type and connection of
muxes, switches or transmission gates must be resolved. Current inclination is toward
power field effect transistors (FETs), because they are feasible and should lessen impact
on circuit performance. Mux-demux trees may be preferable to the parallel-connect
method used inside devices, if frequency response is important. Also, mux-demux trees
would require only n control signals to select 1 of 2n for test stimulus or response.

The type of network, as explained, will affect the number of digital control signals needed.
The standard probably should define where all the digital controls for switches on the pins
will be located. They may be controlled by IEEE 1149.1, but the instructions to access
the scan registers are undefined. None, one or all control signals could be contained in the
boundary scan register. Controls not in the boundary register could be grouped in one or

1-31

more other registers, possibly by function. While such trivial decisions could be left to the
designer, advance specification creates consistency.

Table 1.4.3. Function of Six-Switch Network.

Analog Switch
Number

Connection
Function Signal Connected

AS6
ASl

Observe from
Observe from

analog input pin
core analog circuitry output

AS3 Observe to analog test output

AS2 Control from analog test input

AS4 Control from positive bias voltage

AS5 Control from ground

ASl
AS6

Control to
Control to

core analog circuitry input
analog output pin

Optionally, a similar switching network could be used to surround analog macros inside an
IC, analogous to the internal scan function of 1149.1. The network could be simpler. It
should help test ICs during their manufacturing tests. Additionally, it may simplify board
functional test, by adding critical observation or control of selected internal signals.
Different signals could be selected as appropriate for any given section of the test. The
standard would define limited requirements for this optional macro testing, as was done by
IEEE 1149.1 for internal scan.

ICT.

Although this logic will function like ICT, it is actually built-in test (BIT), because it is
contained within the unit under test (UUT). The proposed BIT logic provides one analog
test input and measures one analog test output. An early framework, presented by IMP,
implements BIT on each signal. Each input pin BIT selects control from one of two
reference voltages. Each output pin BIT performs a 1-bit A/D conversion using a
programmable bias voltage. By selecting a series of bias voltages, the voltage level of
each output can be identified. Parallel stimulus application and response measurement is
an advantage, but the overhead may be too high and testing is limited to DC voltages. A
global or shared BIT resource can be more flexible and use less overhead. ICT as defined
in the strawman is shown in Figure 1.4.3-4. It is an op-amp with its positive input tied to
ground, a programmable current source on its negative input supplying stimulus to the
UUT, and a digital/analog converter (DAC) to measure voltage on its output. With it the
user could measure the following values:

1-32

FROM
UUT

LEGEND: Open switch —II—

Closed switch -HN^-

Figure 1.4.3-4. Global BIT Resource as Defined in ICT Strawman

Resistance

DC Voltage

AC Voltage

Capacitance
or Inductance

Frequency

with programmed current set to necessary value

with the programmed current set to zero

with a measurement filter

with an AC source and measurement filter

with pair of measurement filters yielding varying degrees of accuracy

The use of a dedicated analog test IC to support BIT would permit integration of fairly
sophisticated test capabilities, almost a test system on a chip. It could be a mini-ATE
having one stimulus line with a programmable waveform generator and one response line
with a programmable multi-meter. Control of the mini-ATE could be provided by IEEE
1149.1. The digital bus would control the selection of stimulus and type of response
measurement, as well as scan out a digitized value of the data monitored.

Definition of ICT should not hold back releasing a proposed standard for approval. ICT
could be a recommendation only, or, at most, some minimum function would be required.

Summary. For many reasons shared by digital test, primarily physical inaccessibility and
circuit densities, a great need exists for standard mixed-signal test methods. The PI 149.4
working group hopes to attract more participation from analog test engineers by

1-33

increasing awareness of the need and by holding meetings around more analog-oriented
conferences. The strawman, discussed above, has stimulated vigorous discussion and
research. With inputs and development effort from even more companies, the issues
raised by that framework could be resolved this year. After that, release of a draft version
would be forthcoming.

1.5. IEEE P1149.5/TM-Bus.

1.5.1 Overview and Intended Use.

The IEEE PI 149.5 Module Test and Maintenance Bus (MTM-Bus) proposes a standard,
serial, backplane test & maintenance bus protocol for communicating test control and
status information between modules within an electronic system. A module within IEEE
PI 149.5 may be defined by any logical subsystem partition: single board (most popular
definition) or a cluster of multiple boards. IEEE PI 149.5 is defined to allow the
removal/replacement of modules without affecting MTM-Bus operation.

The MTM-Bus protocol supports singlecast, multicast, and broadcast addressing between
a single bus master module and multiple slave modules (maximum of 250 Slaves). A
module may be programmed by the Master to belong to any one of four separate multicast
groups. Once addressed, both full- and half-duplex transfer of 16-bit serial data packets
between the master and slave(s) is supported.

MTM-Bus communication is message oriented, as opposed to bit oriented (like serial scan
buses). Each message consists of a series of 17-bit packets (16-bits data, 1-bit parity).
The message includes the transfer of command/address information followed by the
transfer of data packets. The bus also supports data flow control capabilities and Slave-
to-Master interrupt capabilities.

Extensive bus error detection capabilities such as parity checking, illegal bus state
sequencing, illegal command sequencing, bus stuck-at fault detection, signal collision
detection, and data overrun error detection are key components of the bus protocol
specification. Other forms of error detection, such as packet counting and address
acknowledgment, are included as protocol options.

The MTM-Bus specification defines a minimum set of Core commands that execute
regardless of the Slave's state and support minimum module control (initialization) and
status reporting. Additional recommended commands are included for module
initialization & self-test, module interconnect testing, and data transfer to on-module
resources. A large user-defined command space is provided to support application-
specific functions.

The MTM-Bus is intended to support system integration of testable modules, as well as
provide a standard means for in-system fault management and diagnostic information flow
between modules. It also provides a standard interface protocol for common module test
resources (e.g., fault log, status registers, etc.).

IEEE PI 149.5 is a protocol definition. It is intended to define a standard test and
maintenance bus interface protocol sufficiently to allow:

1-34

• Flexibility to allow multiple system/backplane profile definitions. Profiles are
necessary such that the MTM-Bus may support various backplane technology
types, system sizes (number of modules), and varying degrees of fault
tolerance.

• Bus (or link) level protocol and message level protocol interoperability. Link-
level protocol interoperability ensures that two modules within the same profile
will communicate with one another correctly. Message-level interoperability
ensures a common system software architecture for interfacing between
modules.

• Equal applicabüity/tailorabitity to commercial or military systems.

Commercial and military systems typically have different intended uses and therefore
different sets of imposed requirements. Commercial systems are often simplified to ensure
low-cost and decreased time-to-market. Military systems are often complex with many
stringent requirements due to the rigorous environment that they must operate in. IEEE
PI 149.5 provides a minimum set of requirements and a large set of recommendations to
allow the system/module designer with ultimate flexibility.

1.5.2. Current Status.

IflKF, Standardization.
The IEEE PI 149.5 specification successfully passed its first ballot in January 1993, with
an 85% ballot return and 91% approval. There were five dissenting votes and comments
from all voters. The PI 149.5 working group activities are continuing with the negative
ballot resolution process and a review of all of the comments received. The working
group plans to submit the proposed standard for a second ballot in mid-1993 and receive
final approval by the IEEE standards committee by the end of calendar year 1993.

The primary issues resulting from the first ballot comments include:

• Lack of definition of an IEEE PI 149.5 to IEEE 1149.1 interface.

• Concern about bus throughput due to required minimum of four pause states
following each packet transfer.

• Poor document organization; difficulty in discerning master-unique and slave-
unique requirements/recommendations.

Each of these issues has been addressed and changes will be incorporated in the second
ballot. The architecture details described in this evaluation anticipate the incorporation of
these changes.

Kelatinnship To Other Standards Efforts.

IEEE PI 149.5 utilized the VHSIC Phase 2 TM-Bus interoperability standard 3.0 and the
Joint Integrated Avionics Working Group (JIAWG) TM-Bus as the initial baseline for its
standardization work. As the standard matured and improvements were made, the

1-35

interoperability between the IEEE PI 149.5 MTM-Bus and the JIAWG TM-Bus grew
apart. Following the F-22 (Advanced Tactical Fighter) and Commanche (Light
Helicopter) contract awards, the JIAWG efforts were reduced from industry-wide
participation to sole participation by the contracting companies. There was even some
disagreement upon TM-Bus standardization among the F-22 and Commanche programs.
As a result, the contracting companies formed a Commonalty Working Group (CWG) and
launched a TM-Bus standardization effort to ensure interoperability between the two
programs. IEEE representatives participated in the CWG meetings and had some
influence in the CWG TM-Bus (aka JIAWG TM-Bus) definition; many of the issues had
already been addressed by the IEEE PI 149.5 working group. The CWG has decided to
adopt the JJEEE PI 149.5 MTM-Bus protocol (to a great extent) and utilize the Society of
Automotive Engineers (SAE) as the forum to standardize the JIAWG specific profiles.
These profiles will be defined in SAE AS4765, Avionics TM-Bus Interoperability
Standard, and will include bus electrical characteristics, bus duality options, and
mastership arbitration/transfer options.

1.5.3. Interface/Number of Pins.

The IEEE PI 149.5 MTM-Bus is defined as a four signal serial bus interface having a
multidrop topology, as depicted in Figure 1.5.3. The four required signals are the clock-
MCLK, master data-MMD, control-MCTL, and slave data-MSD. The MCLK signal is a
synchronous reference for all bus transfers and is sourced by the system (typically
independent from the master and slave signals). All other MTM-Bus signals are sourced
on the logical rising edge of MCLK and are latched into the destination on the logical
falling edge of MCLK. The MCTL signal and MMD signal are sourced by the bus master
to the slave(s) and collectively control the current state of the MTM-Bus. MMD is also
used to transfer data from the master to the slave during data transfer periods within the
bus protocol. The MSD signal is sourced by the slave(s) to the bus master and is used to
transfer data or signal an interrupt. An optional 5th signal, pause request-(MPR), may be
included on MTM-Bus slaves to aid in controlling data flow across the bus. MTM-Bus
master modules are required to implement the MPR signal so that it can communicate with
any slave module.

TM-BUS
MASTER

TM-BUS
SLAVE

TM-BUS
SLAVE

MASTER DATA (MMD

• • •

SL/ WE DATA (MSD)

C :ONTROL(MCTL)

CLOCK PAUSE REQUEST (MPR)

SOURC E CLOCK (MCLK)

Figure 1.5.3. Architecture Interface

1-36

IEEE PI 149.5 defines a minimal set of physical layer (electrical, timing) requirements for
the signals that form the MTM-Bus to ensure module interoperability is maximized. This
approach allows for the definition of multiple system/backplane profiles in the future. This
is necessary due to the varying differences among system size, backplane technologies,
fault tolerant requirements, etc.

The SAE AS-2C-2 TM-Bus task group is in the process of defining avionic profiles for
IEEE PI 149.5 that will support various system/backplane implementations. IEEE
PI 149.5 working group representatives are participating in the SAE effort. The working
group is also investigating the definition of profiles through the IEEE.

1.5.4. Architecture.

The IEEE PI 149.5 MTM-Bus architecture consists of a single bus master module and one
or more slave modules (logical maximum of 250) residing on a single 4/5-wire multi-drop
serial bus, as shown in Figure 1.5.4. The bus master controls all bus transfers to and from
the slave(s). Each slave module is uniquely identified by a fixed 8-bit slave address. The
slave address is typically implemented through dedicated backplane discretes, module
resident E>D? switches, or other programmable means. Messages may be transferred
between the master and a single slave module (Singlecast), a designated group of slave
modules (Multicast), or all modules (Broadcast). There are 255 potential slave addresses
supported within PI 149.5: 251 singlecast addresses (Hex 00-FA), 4 multicast addresses
(Hex FC-FF), and 1 broadcast address (Hex FB). A slave module may be programmed by
the master to respond to any one of the 4 multicast addresses. All slaves respond to the
broadcast address. A slave having a matching module address will respond to the
singlecast address.

Each bused signal of the MTM-Bus, excluding MCLK, is wired-OR such that a module
may be removed or added without disrupting bus operation or yielding the bus unusable.
The wired-OR nature of the signals also supports slave-to-master interrupt capability
without requiring additional signals. It also provides for fault tolerant implementations in
which multiple bus masters having a common mastership arbitration/transfer capability
may coexist

Bus Master

• • • Slave 1 Slave 2 Slave 3 Slave 250

Figure 1.5.4. PI 149.5 Test Bus Architecture

1-37

1.5.5. Bus Protocol.

The PI 149.5 interface protocol is divided into three distinct layers as shown in Figure
1.5.5-1. These layers include the physical layer, the link layer, and the message layer. The
physical layer describes the required input/output signals and their associated electrical
requirements. The link layer describes the bus state transitions and the minimum
requirements for status registers. The message layer describes the characteristics of
packets that are transferred over the bus, the syntax for MTM-Bus messages,
required/recommended functions supported via the bus, and error handling operations.

Master
Message

Layer

Master
Link

Layer

Slave
Message

Layer

Slave
Link

Layer

Physical Layer

Figure 1.5.5-1. PI 149.5 Protocol Layers

Physical Laver.

The IEEE PI 149.5 physical layer defines the bus timing relationships and electrical
interface characteristics for bus signals. PI 149.5 specifies the worst-case timing
relationships based upon system backplane parameters and module timing parameters.
The selection of system performance times must adhere to the modules' capabilities.
Although backplane electrical solutions are not addressed by IEEE PI 149.5,
recommendations are included to enhance interoperability. The exact electrical and timing
specifications for bus signals are tailorable by the system engineer to meet his/her system
needs. It is presumed that various physical layer profiles will be developed in the future to
support a number of potential system implementations (e.g., high drive, low drive; large
system, small system, etc.). The SAE AS-2C-2 TM-Bus task group is already working
potential profiles for avionics equipment

To ensure race-free operation, PI 149.5 implements a dual edged clocking approach. All
signals are sourced on the rising edge of MCLK and are latched on the falling edge of
MCLK. The MMD, MCTL, and MSD signals are required to include a collision detection
capability. Collision detection involves the module verifying that the bus actually assumes
the state that is being sourced by the module. A mismatch between the source and the bus
is the result of a bus collision, in which two modules are attempting to drive the signal to
opposite states; one module will override. The module detecting the collision is required
to release the signal and indicate an error condition (if appropriate). Signal collision

1-38

detection is integral to successful interrupt servicing on the MTM-Bus, as well as
providing additional fault detection capability.

The MSD signal contains response data from the slave. A two MCLK delay is inserted
between the bus transfer state and the data being sourced on MSD to allow for slave
decode/response time. That is, a slave will begin to source MSD with bit 16 of a packet
when the bus enters the transfer 14 (XFER14) state.

Link Laver.
The MTM-Bus link layer defines the lowest level bus protocol state diagrams and
minimum requirements for MTM-Bus accessible registers.

Slave State Machine.

The slave link layer state diagram is shown in Figure 1.5.5-2. This state diagram defines
the bus state sequences involved in the transfer of each 17-bit packet

The IDLE state indicates that there is no message transfer occurring between the master
and slave module(s). This is the second of two states required between each MTM-Bus
message (i.e., bus protocol requires a minimum of two MCLK cycles while MCTL and
MMD are released). The packet transfers between two IDLE states constitute an MTM-
Bus message.

The transfer states (XFER16-XFER0) are used to force the transfer of a packet (17 bits)
between the master and slave module(s). Packets are always transferred MSB (bit 16)
first. The LSB of the packet is the packet parity bit and is transferred during the XFERO
state.
The pause states (PAUSE1, PAUSE2, PAUSE3, PAUSE) are states required between
each packet transfer to provide a minimum delay such that slave modules can interpret and
respond as necessary. A minimum of four pause states are required between packets.
(Note: In the interest of increasing data throughput, the second ballot draft specification
will change this requirement to a minimum of four pause states following the first packet
transfer of the message and a minimum of one pause state on subsequent packet transfers).
The master may insert additional pause states beyond the minimum required by remaining
in the PAUSE state. The slave may request that the master insert additional pause states
by asserting the MPR signal.

The IDLE1 state indicates the end of a message transfer between the master and slave. It
also allows the slave time to process and respond to any post-message errors that may
occur.

The ERROR state is a slave state used to ensure a consistent slave response to bus
protocol error conditions. It provides the slave with a place to wait until the completion
of the message when a state sequence error causes the slave and master link layers to
become unsynchronized. Individually addressed slave modules generate an interrupt to
the master during the ERROR state by asserting the MSD signal. This guarantees that
error detection latency by the master is reduced to a minimum.

1-39

o
\ ERROR y

V

State
Sequence

Error

\!

v
V
V

V

£

-c

-c

IX or 01

ex
01

—c

n MCTl, MMD-00

IDLE
3«:

XFER16
Tjx"

XFER15

I
XFER14

3JT

XFER13

XFER2

x«:
XFER1

JJL
XFERO
XiE

PAUSE2

Xs_
PAUSE3
TIT

PAUSE

1 °°
IDLE1

>

>

1
J

D

3
(PAUSET)

3

>

Figure 1.5.5-2. Link-Layer Bus States

MTM-Bus Registers.

The MTM-Bus requires a minimum of two status registers, and recommends a third, for
indicating MTM-Bus slave status, bus error conditions, and module status information.
Additional status registers may be implemented to meet the needs of the module.

The Slave Status Register provides key information to the master about the MTM-Bus
slave including:

• the module's start-up built-in test results,

• the processing status for the previously received MTM-Bus message,

• the primary cause for a slave generated MTM-Bus interrupt,

• the currently selected multicast group for the slave, and

• the current interrupt capabilities for the slave.

1-40

The Bus Error Register provides specific causes for link and message layer error
conditions which may have occurred during or immediately following the message. The
potential bus errors include:

Broadcast/multicast message not received properly,

Slave data fault; i.e., a bus collision,

Command resource unavailable,

Incorrect packet count,

Illegal port selected,

Port transfer error,

Command sequence error,

Illegal command,

Packet parity error,

Data overrun error, and

State sequence error.

The Module Status Register is an optional register that provides a module with a place to
include:

• Specific causes for interrupts sourced by the module application (i.e., not
necessarily related to the MTM-Bus), and

• Module-specific status information.

Message Laver.

The message layer defines the characteristics of packets which constitute an MTM-Bus
message, the required syntax for MTM-Bus messages, and the functions which must or
should be supported by the bus master and slave(s).

Packet Types.

There are five packet types possible within an MTM-Bus message, as indicated in Table
1.5.5-1.

1-41

Table 1.5.5-1. MTM-Bus Packet Types

Packet Originator Description

HEADER Master First packet in an MTM-Bus message

PACKET COUNT Master Optional; number of additional packets

ACKNOWLEDGE Slave Optional; Slave status information

DATA Master or Slave Binary Data

NULL Master or Slave Special Data packet

The HEADER packet is the first packet transferred within a message and contains the
target slave module address, a command field and an acknowledge request bit. The slave
module address identifies the target slave(s) the master wishes to include within the MTM-
Bus message. The command field defines the remainder of the message sequence and the
actions that will take place. The master may request a slave to transmit an
ACKNOWLEDGE packet as the first packet returned by setting the acknowledge request
bit in the HEADER packet.

The PACKET COUNT packet, if included within a message, is transferred as the first
packet following the HEADER. The PACKET COUNT packet contains a value
indicating the number of additional packets that will be transferred within the message. If
the value is zero, then the number of additional packets is undefined. The PACKET
COUNT packet is optional and is intended to be utilized with large MTM-Bus messages
to aid in error detection.

The ACKNOWLEDGE packet, if included within a message, is the first packet transferred
by the slave. If requested in the HEADER packet, the ACKNOWLEDGE packet is
transferred coincident with the PACKET COUNT packet from the master. Some MTM-
Bus commands (Read Status, Contend, ...) require the ACKNOWLEDGE packet to be
transferred regardless of the state of the acknowledge request bit in the HEADER packet.
The ACKNOWLEDGE packet contains the slave's 8-bit module address and the contents
of the Slave Status Register.

DATA packets contain binary data as defined by the MTM-Bus command in the
HEADER and are transmitted as defined by the message sequence for that command.
Binary data of less than 16 bits in length is LSB justified within the packet with a
recommendation that the unused bits be set to zero. Binary data of greater than 16-bits
(i.e., spans multiple DATA packets) is transmitted in little ENDIAN format, with the least
significant 16-bits in the first packet, the next 16 least significant 16-bits in the second
packet, etc.

NULL packets are a unique form of DATA packets. The NULL packet consists of all
zeros with good parity. NULL packets are transferred by the sending module (Master or

1-42

Slave), following the HEADER packet, when the receiving module does not expect a valid
DATA packet.

Message Format.
The standard MTM-Bus message format is shown in Figure 1.5.5-3. Each message
consists of a HEADER packet as a minimum. The HEADER packet may be optionally
followed by a ACKNOWLEDGE/PACKET COUNT packet pair if desired. The
remainder of the message consists of DATA packets transferred in full-duplex or half-
duplex mode between the master and slave.

MASTER

HEADER

PACKET CNT

MDATA 1

MDATA 2

SLAVE

ACKNOWLEDGE

SDATA 1

SDATA 2

MDATA N SDATA N

Figure 1.5.5-3. Generic PI 149.5 Message Format

P1149.5 Commands.

IEEE PI 149.5 defines 12 required command codes and 17 recommended command codes
as shown in Table 1.5.5-2. MTM-Bus commands are divided into five classes: the Core
class, Data Transfer class, Module Initialization and Self-Test class, Module I/O Control
and Test class, and User-Defined class. The Core class contains all of the required
commands. These commands are required to execute regardless of the current state of the
module.
For each command in the table, the message type identifies the general message format to
be followed for that command. The possible message types are simple, send, receive, and
send/receive. Simple messages consists of a HEADER packet and optional
ACKNOWLEDGE/PACKET COUNT packet pair only. These commands typically
perform a well defined function such as enable interrupts, reset the module, etc., that does
not require additional data. Send and receive type messages are considered half-duplex;
expected data only flows in one direction, to the slave or to the master. NULL packets
are transmitted by the receiving module (master or slave) opposite to the expected data.
Send messages are those messages in which the slave sends data to the master in response
to the command. For example, reading slave status is a send type message. The master
transfers NULL packets to the slave while the slave transfers the contents of internal

1-43

registers to the master. Receive messages are those message in which the slave receives
data from the master. The slave transfers NULL packets to the master while the master
transfers a series of expected data packet to the slave. Send/Receive messages are
considered full-duplex; expected data flows in both directions, from master to slave and
from slave to master.

For a given message, there may be a fixed number of packets of delay between the slave
receiving a command/data and the slave transmitting the response packets. This delay is
known as the "packet latency". Packet latency is specified for all required commands and
many of the recommended commands. The packet latency is defined by the module
designer for any user-defined commands or data transfer ports.

Data Transfer Porte.

The MTM-Bus protocol defines a standard data transfer message class. This class of
commands supports access to a maximum of 65536 user-defined data transfer ports. Each
data transfer port is individually addressable via the MTM-Bus. Various types of access
to the port is provided such as read, write, read/write, read indirect, write indirect, etc.
IEEE PI 149.5 provides recommended data transfer port definitions for some typical
module resources such as status registers, module fault log, IEEE 1149.1 bus, etc. These
definitions standardize the message format for accessing the port

Interrupts,

Unlike other serial scan-type buses, the MTM-Bus supports an interrupt capability without
the need for additional bus signals. This is accomplished by sharing the function with
normal slave data transfer on the MSD signal. The MSD signal contains slave data during
the bus transfer states (XFER16-XFER0) and, if asserted, indicates a slave interrupt
condition during non-transfer bus states (Idle, Pause, ERROR). Interrupts may be
signaled due to a bus error condition detected by the slave or a request from the module
application. The Bus Error Register and Module Status register identify the interrupt
causes.

Interrupt Servicing

To service an MTM-Bus interrupt, the master module issues the Contend For Bus
message. During the contend, all interrupting slave modules source their slave address
onto the MSD signal, one bit at a time. Every bit sourced is compared with the actual bus
state using the required collision detection logic. A miscompare, or bus collision, results
in the slave detecting the collision to discontinue the contend by releasing MSD. Since all
packets are transferred MSB first, the resulting packet received by that master will identify
the interrupting slave with the highest module address. After servicing this interrupt, the
master re-issues the Contend For Bus message, and continues servicing each interrupting
module in the same manner.

1-44

Table 1.5.5-2. MTM -Bus Command Codes

Command Command Message

Class Codes Command Type Required?

Core 0000000 Read Status Send Required

0000001 Initialize Module Simple* Required
0000010 Reset Slave Interface Simple Required

0000011 Contend For Bus Simple Required

OOOOlxx Multicast Select Simple Required

0001000 Enable Idle Interrupts Simple ^ Required

0001001 Enable Pause Interrupts Simple Required

0001010 Disable Idle Interrupts Simple Required

0001011 Disable Pause Interrupts Simple Required
0001100 Enable Module Control Simple Required
0001101 Data Echo Command Send/Receive Required
0001110 Reserved Required

to 0011111
1111111 Illegal Command Simple Required

Data 0100000 Read Data Send/Receive Recommended

Transfer 0100001 Write Data Receive Recommended

0100010 Read/Write Data Send/Receive Recommended

0100011 Read Data Indirect Send/Receive Recommended

0100100 Write Data Indirect Receive Recommended

0100101 Write Data fodirect/Update Receive Recommended

'0100110 Read Data Indirect/Update Send/Receive Recommended

0100111 Reserved Required

Module 0101000 Reset Module with SBIT Simple* Recommended

Init,& 0101001 Reset Module without SBIT Simple* Recommended

Self-test 0101010 Module IBIT Simple* Recommended
0101011 Reserved Required

to 0101111

Module 0110000 Disable Module I/O Simple* Recommended

vo 0110001 Enable Module VO Simple* Recommended

Control & 0110010 Force Module I/O Receive* Recommended

Test 0110011 Sample Module - No Change Send* Recommended
0110100 Sample Module - Don't Care Send* Recommended
0110101 Sample Module with Force Send/Receive Recommended
0110110 Release Module I/O * Recommended
0110111 Reserved Simple Required

to 1001111

User 1010000
to 1111110

User-defined Commands

* Indicates that an Enable Module Control (EMC) command must precede this command

1-45

1.5.6. Bus Timing.

To ensure race-free operation, the PI 149.5 MTM-Bus uses a dual edge clocking
approach. The system designer is allowed the flexibility to define the MCLK high and low
time in order to maximize performance.

All MTM-Bus riming is based upon system and module timing parameters. These
parameters are typically defined by the target system and will therefore often be defined by
a system specific timing profile. Each MTM-Bus module must document its module
timing parameters. The MTM-Bus timing relationships can be summarized as follows:

tl>=Tl

t2>=T2

tc>=Tc,

tl>=Tco+tp+Ts+tcs

t2>=Th+tcs

where:

tl =MCLKhightime

t2 = MCLK low time

tHL = MCLK transition time from valid logic 1 to valid logic 0

tLH = MCLK transition time from valid logic 0 to valid logic 1

tc = MCLK cycle time (tc=tLH+tl+tHL+t2)

Tl = minimum operable tl for the module

T2 = minimum operable t2 for the module

Tc = minimum operable tc for the module (time from the start of logic 1 to
the start of next logic 1

Tco = module clock-to-output time

tp = backplane propagation and settling time

Ts = module setup time

tcs = clock skew as measured between the module driving and the module
receiving

Th = module hold time

Note that Tx is a module specific timing parameter and ty is a system specific timing
parameter.

1-46

1.6. IEEE 488 (GPIB).

1.6.1. Overview and Intended use.

The IEEE 488 standard digital interface for programmable instrumentation has been the
prominent system interconnect and communications bus used in engineering and scientific
workstations since its adoption in 1975. The IEEE 488, or as it is commonly called,
general-purpose interface bus (GPIB), was created to establish order amongst the
numerous instrumentation interfaces in use during the mid-70s. The standard established
the electrical, mechanical, and functional characteristics of the bus, as well as the
connector. The bus is designed to be used in limited distance applications, allows
asynchronous communications, and supports a wide range of data rates.

The beauty of the IEEE 488 is its capability to permit independently manufactured and
self-contained instruments, with a wide range of capability, to be interconnected,
communicate, and form a single functional system. This interconnectivity has minimum
restrictions on the performance characteristics of the connected instruments, and enables
functional systems to be created with low cost 'off-the-shelf instruments.

1.6.2. Current Status.

This general-purpose interface bus is currently in use throughout industry and government
In 1987, the capability of the IEEE 488 bus was revised, expanded, and renamed IEEE
488.1. This renaming was done to allow the expanded bus to be known as IEEE 488.2 .
The IEEE 488.2 bus supports the original capabilities and design characteristics of the
IEEE 488.1 bus with enhancements in the areas of commands, code data formats, and
protocol. Though the IEEE 488 bus (IEEE 488.1) has been around for some 20 years, it
is still the most widely used test and measurement bus in the market place.

Testing Application.

The IEEE 488's capability to control, monitor and provide common cabling to instruments
has allowed it to remain a popular test bus for use in industry and government
applications. Its precise command language allows it to setup and trigger device events,
and control the capture of instrument data for analysis by microprocessors. Several
embedded systems have used the IEEE 488 bus as a means to communicate integration
and test information. The YF-22A Mission Display Processor and the F-16 Modular
Mission Computer systems use the IEEE 488 to connect to the user console to control
embedded emulation logic. Via the IEEE 488, operations such as upload/download,
read/write memory, run, stop, single-step, and examine or modify registers can be
performed.

1-47

Table 1.6.3. IEEE 488 Bus Signal Lines

DATA BUS

DI01
DI02
DI03
DI04
DI05
DI06
DI07
DI08

TRANSFER
CONTROL

DAV
NRFD
NDAC

INTERFACE
MANAGEMENT

IFC
ATN
SRQ
REN
EOI

1.6.3. Interface/Number of Pins.

The IEEE 488 standard specifies a single type of 24-pin connector in order to minimize
cable requirements. The bus structure is organized into three sets of signal lines; data bus,
data byte transfer control, and general interface management. The identification of each
signal within the three sets is shown in Table 1.6.3. The eight data bus lines are used for
parallel data communications. The transfer control bus lines provide a three-signal
handshake scheme to transfer each data byte of information across the bus. The five
interface management bus lines are used to provide an orderly flow of data from one bus
device to another.

The functions supported by the standard are identified in section 1.6.6. Using these
functions, the designer defines the capability of the device. Each device capability requires
the use of one or more signals from the above three sets of signal lines. Based on the
minimum capability of a device, the minimum set of signal lines required to be compatible
with the IEEE 488 bus consists of the following:

• DIO1-7

• DAV, NRFD, NDAC

• IFC and ATN (unnecessary in systems without a controller)

1.6.4. Architecture.

The basic IEEE 488 system consists of five components; controller, 488 bus, source and
measuring instruments, unit under test interface (e.g. fixture), and the unit under test, and
the IEEE 488 bus. Figure 1.6.4-1 illustrates this basic setup. Within a basic IEEE 488
system, the controller is a computer which manages and directs all communications over
the bus network. Instruments which source signals and measure parameters are required
for test measurement system operations. Test fixtures typically interface the source and
measurement instruments to the unit to be tested.

1-48

IEEE-488 Interface

CD
IZZI

[Z=l

UITT

Interface
UUT

Source and
Measuring Instruments

Figure 1.6.4-1. Basic 488 System Architecture

Test and measurement systems using the IEEE 488 bus can be configured in a number of
ways, one of which is represented by Figure 1.6.4-2. The IEEE 488 bus can be either in a
star or daisy chain configuration.

The IEEE 488 bus supports a total of 15 devices. This total includes the controller, all
source and measuring instruments, and the interface to the unit to be tested. The IEEE
488 bus is designed for short data path applications with the total transmission path length
not exceeding 20 meters. The bus exhibits relatively low electrical noise during
operations. Bus drivers and receivers are based on TTL technology.

The IEEE 488.2 standard, is an enhancement to the original standard and defines
additional, higher level capabilities. Among the changes are:

• more precise message exchange protocols,

• a defined process for handling multiple and erroneous messages,

• predefined commands which apply to all instruments,

• defined formats for handling integers, arrays, characters, etc., and

• a defined format for handling reporting of errors.

1-49

1 1 1 i

Computer Instruction 1 Instruction 2 Instruction 3

 r—i i— 1 1 I I 1

Computer Instruction 1 Instruction 2 Instruction 3

Figure 1.6.4-2. Typical IEEE 488 System Configuration

1.6.5. Protocol.

The IEEE 488 bus architecture introduced the concept of device listeners, device talkers,
and device controllers for establishing an orderly flow of information across the interface.
Bus protocol makes use of these three types of device capability and the signal lines
identified above. Message bytes are carried on the DIO 1-7 signal lines in a bit parallel
byte-serial form. Message flow is generally in both directions and can be asynchronous.
Two types of messages can be transferred over the bus; uniline and multiline. Uniline
messages are messages transmitted over a single bus line and are one of the interface
management lines. Several uniline messages can be sent concurrently over the bus.
Multiline messages consist of several signal lines grouped together in an exclusive set of
signals. Only one multiline message can be sent at one time.

Three signal lines (DAV, NRFD, and NDAC) control the data bytes across the bus from
the device acting as a controller or talker to one or more devices acting as listeners.
Signal DAV (for data valid) is used to indicate whether or not data is available and valid
on the bus. Signal NRFD (for not ready for data) identifies whether the device on the bus
is ready to accept incoming data. Signal NDAC (for not data accepted) is used to signal
the condition of acceptance of data by the device.

Five interface signal lines are used to manage an orderly flow of information across the
interface:

• ATN (attention) is used (by a controller) to specify how data on the DIO signal
lines are to be interpreted and which devices must respond to the data

• IFC (interface clear) is used (by a controller) to place the interface system,
portions of which are contained in all interconnected devices, in a known state

• SRQ (service request) is used by a device to indicate the need for attention and
to request an interruption of the current sequence of events

• REN (remote enable) is used (by a controller) in conjunction with other
messages to select between two alternate sources of device programming data,
either front panel or 488 control

1-50

• EOI (end or identify) is used (by a talker) to indicate the end of a multiple byte
transfer sequence or, in conjunction with ATN (by a controller), to execute a
polling sequence

A device on the IEEE 488 bus has an address which is usually set via switches on its rear
panel. Devices may have any or all of the following capabilities: controller, talker, and
listener. Only one controller can be allowed within the system at a time. Table 1.6.5-1
identifies messages which can be received and transmitted over the bus.

As mentioned in section 1.6.2, the IEEE 488.2 bus supports the original capabilities and
design characteristics of the IEEE 488.1 bus, with enhancements. Devices compliant with
the 488.2 bus must support a minimum set of capabilities. As a minimum, devices must be
both talkers and listeners. Several message formats are defined and include, 7-bit ASCII
code for text messages, and binary floating-point numbers using the IEEE-754-1985
standard format. An enhanced command set is defined to provide control of devices
connected to the bus. Some commands are standard while others are optional. Table
1.6.5-2 list the commands and their functional group.

1.6.6. Functions supported.

As illustrated in Figure 1.6.6, a device connected to the IEEE 488 bus can be defined as
processing five distinct functional areas; the interface bus, drivers and receivers, message
coding, interface functions, and device dependent functions. Device dependent functions
are beyond the scope of this report.

1-51

Table 1.6.5-1. IEEE 488.1 Messages

Mnemonic Message
ATN attention
DAB data byte
DAC data accepted
DAV data valid
DCL device clear
END end
GET group execute trigger
GTL go to local
IDY identify
IFC interface clear
LLO local lockout
MLA my listen address
MSA my secondary address
MTA my talk address
OSA other secondary address
OTA other talk address
PCG primary command group
PPC parallel poll configure
PPD parallel poll disable
PPE parallel poll enable
PPRn parallel poll response
PPU parallel poll unconfigure
REN remote enable
RED ready for data
RQS request service
SDC selected device clear
SPD serial poll disable
SPE serial poll enable
SRO service request
STB status byte
TCT take control
UNL unlisten

1-52

Table 1.6.5-2. IEEE 488.2 Messages

Command Group Cmd
Mnemonic

Description Required /
Optional

Auto Configure *AAD Assign address Optional
*DLF Disable Listener Function Optional

System Data *E)N Identification query Required
*OPT Option ID query Optional
*PUD Protected user data Optional
*PUD? Protected user data query Optional
*RDT Resource description transfer Optional

Internal Operation *CAL? Calibration query Optional
*LRN? Learn device-setup query Optional
*RST Reset Required
*TST Self-test query Required

Synchronization *OPC Operation complete Required
*OPC? Operation complete query Required
*WAI Wait to complete Required

Macro commands *DMC Define macro Optional
*EMC Enable macro Optional
*EMC? Enable macro query Optional
*GMC? Get macro contents query Optional
*LMC? Learn macro query Optional
*PMC? Purge macros Optional

Parallel Poll *IST? Individual status query Required&
*PRE Parallel poll enable register Required&
*PRE Parallel poll enable query Required&

Status and event *CLS Clear status Required
*ESE Event status enable Required
*ESE? Event status enable query Required
*ESR? Event status register query Required
*PSC Power on status clear Optional
*PSC? Power on status clear query Required
*SRE Service request enable Required
*SRE? Service request enable query Required
*STB? Read status byte query Required

Device trigger *DDT Define device trigger Optional
*DDT? Define device trigger query Optional
*TRG Trigger Required$

Controller *PCB Pass control back Requiredf
Stored settings *RCL Recall instrument state Optional

*SAV Save instrument state Optional

Where:
Required& Required with parallel-poll capability
Required$ Required with device-trigger capability
Required* Required with system-controller capability

1-53

DEVICE (APPARATUS)

DEVICE FUNCTIONS

0 ©

SH AH

"T llL

if

0
l 1 r

INTERFACE FUNCTIONS

TE

or

LE SR RL PP DC DT

MESSAGE CODING

I
DRIVERS ANDl I RECEIVERS

>

INTERFACE BUS

A = Capability defined by this standard

B = Capability defined by the designer

1 - Interface bus signal lines

2 - Remote interface messages to and from interface functions

3 - Device dependent messages to and from device functions

4 = State linkages between interface functions

5 » Local messages between device functions and interface functions

(messages to interface functions are defined, messages from

interface functions exist according tot he designer's choice)

6 = Remote interface messages sent by device functions within a

controller

Figure 1.6.6. General IEEE 488 Functional Areas

The following interface functions are supported by the standard.

• Source Handshake (SH) controls the initiation of, and termination of multiline
messages.

1-54

Acceptor Handshake (AH) along with the SH function, controls proper
reception of multiline messages.

Talker or Extended Talker (T or TE) allows devices to send device dependent
data over the interface. Address Extension is provided under the TE option.

Listener or Extended Listener (L or EL) allows devices to receive device
dependent data over the interface. Address Extension is provided under the
LE option.

Service Request (SR) allows devices to request service asynchronously from
the bus controller.

Remote Local (RL) allows devices to select between two sources of incoming
data; either from the local front panel controls, or from the bus interface.

Parallel Poll (PP) allows devices to present a parallel poll response to the
controller without being addressed to talk.

Device Clear (DC) allows devices to be cleared (initialized) either
independently or as part of a group of devices.

Device Trigger (DT) allows devices to be started either independently or as
part of a group of devices.

Controller (C) allows devices to send device addresses, address commands,
and universal commands to other devices over the bus interface.

1.6.7. Speed.
The interface bus will operate at distances up to 20m, at a maximum of 250,000 bytes per
second, with an equivalent standard load for each 2m of cable using 48mA open collector
drivers. The interface bus will also operate at distances up to 20m at a maximum of
500,000 bytes per second, with an equivalent standard load for each 2m of cable using
48mA three-state drivers. To achieve maximum possible data transfer rate (nominally up
to 1,000,000 bytes per second) within a system, the following is required:

1. devices should use a minimum signal settling time for multiline messages of
350ns.

2. devices should use 48mA three-state drivers.

3. device capacitance on each lead (REN and IFC excepted) should be less
than 50pF per device. The system total device capacitance should be no
more than 50pF for each equivalent resistive load in the system.

4. devices in the system should be powered on.

5. interconnecting cable links should be as short as possible up to a maximum
of 15m total length per system with at least one equivalent load for each
meter of cable.

1-55

NOTE:Anytime a device following condition (1) is placed in a system, even if
higher speed operation is not intended, there may be data transfer errors if
conditions (2) through (5) are not met for that system.

1.7. MIL STD. 1553B/1773.

1.7.1. Overview and Intended use.

The MIL-STD-1553B data bus provides a communication path between processing
resources and existing off-the-shelf equipment. The bus uses serial digital pulse code
modulation and supports word and message validation, single/multi-topologies, and three
types of terminals; bus controller, bus monitor, and remote terminal (see Figure 1.7.1).

rrr
i i i

BUS
CONTROLLER

rrT

REMOTE
TERMINAL

SUBSYSTEM®

-J--T-T--
rrr

i i i

OPTIONAL
 ? REDUNDANT

CABLES/FIBERS

SUBSYSTEM
WITH EMBEDDED

REMOTE
TERMINAL

Figure 1.7.1. Typical Multiplex Data Bus Terminal Connectivity

The 1553 Bus is a serial data bus based on message transmissions. Currently there are 10
types of messages with associated message formats. Each message consists of control
words, status words, and data words. Up to 31 terminals can be placed on the data bus,
and each terminal can service up to 30 subsystems.

The MLL-STD-1773 was adopted in 1988 to provide fiber optic transmission within a
1553-type medium. Bus connectivity is similar to that of Figure 1.7.1.

1.7.2. Current Status.

MIL-STD-1553 is a mature standard which is being used by the military and industry.
Originally adopted by the Tri-Service and other industry elements in 1973, it was revised
in 1978 and became ML-STD-1553B. It has achieved wide success in numerous
applications in military programs for its ability to support integration of avionic
subsystems. The standard has allowed interchangeability of equipment from numerous
suppliers due to its flexibility to support multiple supplier designs.

MEL-STD-1773 provides for the use of fiber optics in implementing a 1553-type network.
This standard preserves the 1553 multiplex bus techniques while it provides for the use of
fiber optics to take advantage of the wide bandwidth characteristics of the fiber. The

1-56

current 1773 specification is identical to the 1553 specification except where fibers
characteristics are used instead of wire characteristics.

Testing Annlication.

Current avionic platforms have used the 1553 to provide status information to assist in
mission decisions. Embedded condition monitoring applications for the V-22 tiltrotor
aircraft subsystem uses the 1553 bus to obtain vibration, structural, and engine monitoring
information to assist in identification of potential vehicle failures and to schedule
maintenance operations based on component usage and not component failure. Via the
1553, condition monitoring information can be obtained from engine diagnostic
applications, monitoring of rotor and gear box vibrations, and structural component usage
at speeds which allow decisions to be made automatically by the system, or by the pilot, as
to the flight worthiness of the vehicle.

The use of a 1773 bus is being studied to determine its applicability in systems similar to
the V-22. The light weight of the 1773 fiber-optics bus would go a long way to reducing
the weight penalty experienced by aircraft contractors implementing condition monitoring
subsystems, while at the same time maintaining or surpassing bus throughput obtained by
1553 buses. The use of a 1773 fiber-optics bus would allow more extensive monitoring of
vehicle flight-critical and safety-critical subsystems due to its light weight.

1.7.3. Interface/Number of Pins.

The interface requirements associated with using the 1553 within system designs are listed
in Table 1.7.3. Minor variations from the specified cable characteristics has been shown to
still provide adequate system performance.

Current 1773 interface requirements support those of the 1553 specification; identified by
the use of an asterisk (*). Transmission line and cable coupling parameters are currently
not defined.

1-57

Table 1.7.3. 1553B/1773 Data bus/Coupling Requirements
Parameter

General
Applications
Data Rate
Word length
Numner of data bits/word
Transmission technique
Operation
Encoding

Transmission line
Cable type
Capacitance (wire to wire)
twist
Characteristic impedance (zO)
Attenuation
Length of main bus
Termination

Shielding
Cable coupling

stub definition

MIL-STD-1553B

DoD Avionics (*)
1MHz (*)
20 bits (*)

16(*)
half-duplex (*)
Asynchronous (*)
Manchester II biphase (*)

Twisted-shieled pair (fiber optic cable for 1773)
30 pF/ft, maximum
Four per foot (0.33/in), minimum
70 to 85 ohms at 1.0 MHz
1.5 dB/100 ft at 1.0 MHz, maximum
Not specified
Two ends terminated in resistors equal to zO +/-
2%
75% coverage minimum

Short stub < 1ft., Long stub > 1 to 20 feet
Coupler requirement

Coupler transformer
Turns ratio
Input impedance
Droop
Overshoot and ringing

Common mode rejection
Fault protection

Stub voltage

Direct coupled-short stub; transformer coupler-
long stub

1:1.41
3,000 ohms, min. (75 kHz to 1.0 MHz)
20% maximum (250-kHz)
+/-1.0V peak (250-kHz square wave with 100-ns
max. rise and fall time)
45.0 dB at 1.0 MHz
Resistor in series with each connection equal to
(0.75z0)+/-2.0% ohms
1.0V to 14.0V p-p, I-L min. signal voltage
(transformer coupled); 1.4V to 20.0V, p-p, I-L
min, signal voltage (direct coupled)

1.7.4. Architecture.

A terminal within a 1553 environment typically consists of four general functions. The
four functions are: analog receiver/transmitter, digital bit and word processor, digital
message processor, and the subsystem interface. Figure 1.7.4-1 illustrates the interface
between these four functions. The unique addressing scheme used within the 1553
environment allows for up to 30 terminals to be connected within the network. 1773
network architecture is similar to that of a 1553 network, except for the use of fiber
optics.

1-58

WORD PROCESSOR MESSAGE PROCESSOR

ANALOG

TRANSMIT/

RECEIVE

(OPTICS T/R FOR 1773)

BIT/WORD

PROCESSOR

(ENCODER/

DECODER)

MESSAGE

PROCESSOR

SUBSYSTEM

INTERFACE

CIRCUITS

DATA BUS

INTERFACE

SUBSYSTEM

OR HOST

PROCESSOR

. INTERFACE

Figure 1.7.4-1. Terminal Functional Elements

Bus traffic within a 1553 network travels in one direction at a time (half-duplex) and is
controlled by a terminal on the bus. Three types of terminals currently exist within a
network. The following identifies and describes the primary function of these terminals
and other elements within the network:

Bus Controller. The Bus Controller's main function is to provide data flow control for all
transmissions on the bus.

Bus Monitor. The Bus Monitor's main functions are to listen to all addresses or a subset
of addresses and to store the selected data for later use, and to observe transmissions on
the data bus and to act on the data to solve problems that occur in the bus controller
(generally used as a back-up bus controller).

Remote Terminal. The remote terminal's main function is to interface to the bus and
respond to commands issued by the bus controller.

Data Bus Coupler unit. The Data Bus Coupler unit isolates the main bus from the
terminal and thus prevents shorts.

Data Bus. The Data Bus is a twisted pair shielded cable for 1553 networks and fiber
optics for 1773 networks.

1553 networks are made up of sensors or physical connections attached to the data bus.
In order for all elements on the bus to communicate with each other, a bus topology must
exist which allows all elements to have access to all transmissions. Bus topologies are
illustrated in Figure 1.7.4-2. 1773 data bus topology is similar to that of a 1553 network.

1-59

SENSOR A SENSOR B SENSOR C

 II
- BUS1

BUS 2 T
 «

COMP. 1

Single Level Bus Topology

C&D NAV WEAPON

DEL.1

 1 1 -m SYSTEM 1

 _l 1

■ \ > m
 A ., _ •

COMP. 1 COMP. 2

BUS

INTERFACING

DEVICES

 m 41 BUS SYSTEM 2

 • 1 ■ -

C&D NAV „
2

WEAPON

DEL 2

Multiple Level Bus Topology

Figure 1.7.4-2. Bus Level Topology

Data Bus Topology. Data bus topology is the mapping of physical connections of each
unit to the data bus. Two types of data bus topologies exist; single level and multiple
level. Single level topology consists of all terminals connected to a single bus regardless
of data bus redundancy. Multiple level topology (or hierarchical) consists of single level
buses being capable of passing data on one bus system to another bus system.

Data Bus Control. Two schemes exist for controlling the data bus; stationary master and
non-stationary master. In the stationary master scheme one master will control the data
bus at all times. However, in systems with redundancy, there is usually a bus controller
designated as backup to the primary bus controller. In a non-stationary bus master
scheme, several bus controllers exist. Each bus controller is designated a specific time for
controlling the bus. A bus control transfer mechanism is established to ensure each
potential bus master gets its share of controlling the bus. Bus controller failure schemes
must be established to ensure control of the bus is transferred to a healthy bus controller
whenever the primary bus controller fails.

1-60

1.7.5. Protocol.
Basic message protocol can be divided into two groups; normal message transfers and
broadcast message transfers. Message protocol is currently the same for 1553 and 1773
networks.

Normal Message transfers. Normal message transfer protocol requires that all error free
messages received by a remote terminal be followed by the transmission of a remote
terminal status word. This allows for validation of error free transmission.

Broadcast message transfers. Because broadcast message transfers are received by
more that one remote terminal a different response scheme is required. A specific remote
terminal can be designated as the sole responding terminal from a broadcast message, or
the bus controller can poll each remote terminal to obtain its status.

All messages are initiated by the bus controller using command word(s). Messages are
issued to a remote terminal through a message stream consisting of the remote terminal's
address, direction of message transmission (transmit/receive bit), subaddress (destination
within the specific remote terminal), and the word count. The command word is
immediately followed by the appropriate number of data words identified in the command
word. The receiving terminal validates the received message by transmission of a status
word.
There are three types of words allowed in 1553 and 1773 environments; command word,
status word, and data word. Each word consists of 16 bits plus sync pattern, plus parity
bit (3 bit times long) and a one bit parity providing for a 20 bit long format. The
command word sync and the status word sync are identical. The data word sync is the
inverse of the command and status word sync. The bus controller does not have an
address and parity is odd. Figure 1.7.5 illustrates the format and bit times for each word.

Command word. The command word uses bit times 1-3 for the sync, bit times 4-8 for
the remote terminal address, bit time 9 for the transmit/receive direction indicator, bit
times 10-14 for the subaddress/mode, bit times 15-19 for data word/count/mode code, and
bit time 20 for parity. Command words can only be transmitted by a bus controller. The
subaddress can act as a memory address pointer which contains the information requested
for transfer to the bus controller.

Data word. The data word uses bit times 1-3 for the sync, bit times 4-19 for data, and bit
time 20 for parity.

Status word. The status word uses bit times 1-3 for the sync, bit times 4-8 for the remote
terminal address, bit time 9 for message error indicator, bit time 10 for the instrumentation
indicator, bit time 11 for the service request indicator, bit times 12-14 are reserved, bit
time 15 for the broadcast command received indicator, bit time 16 for the busy indicator,
bit time 17 for the subsystem flag, bit time 18 for the dynamic bus control acceptance
indicator, bit time 19 for the terminal flag indicator, and bit time 20 for parity.

1-61

BIT TIMES 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COMMAND

WORD
5 1 5 5 1

SYNC REMOTE TERMINAL T/R 5UBADDRESS/MODE DATA WORD COUNT/ P
ADDRESS MODE CODE

DATA WORD

SY MC

16

DATA

1

P

COMMAND

WORD
5 1 1 1 3 1 1 1 1 1 1

SYNC REMOTE TERMINAL

ADDRESS

a
O
§2
LU
LU
U

z
0

I
LU

D

UJ

a
UJ
U
5

RESERVED 52
9 u

Si

U_

>-

l/> LU
D U
m Z

"?
% <J ? u
>■ -f

O

Li-
-J < z

S
S

T/R transmit/receive 5 £ 5! * 3 O •-
P parity 2 2

0
u Z

O
U

Figure 1.7.5. 1553/1773 Word Formats

1.7.6. Functions supported.

The four typical functions performed to support 1553 and 1773 environments are: analog
receiver/transmitter (or Optics receiver/transmitter), digital bit and word processor, digital
message processor, and the subsystem interface.

Analog (/Optics) Receiver/Transmitter. The Analog Receiver/Transmitter is the analog
front-end required to interface the terminal's digital logic with the data bus. In 1773
networks, this functional element would be replaced by an optics receiver/transmitter. The
analog receiver/transmitter contains the coupling transformer and fault isolation resistors
for connection to the data bus. The receiver provides low noise rejection and a digital
output compatible with the digital logic that follows in the bit and word processor. The
transmitter drives the bi-phase modulated signal to form data word formats.

Encoder/Decoder. The encoder/Decoder analyzes the data bits and words required for
data transfer on the receiver side of the terminal. The analog signal from the receiver is
input to the decoder for proper manchester coding verification, error flagging, and parity
checking. The encoder or data transmitter, generates the proper sync, data, and parity
control for supplying the control signals for command, status, and data words to the
analog transmitter.

1-62

Message Processor and Subsystem Interface. The message processor receives the data
words, flagged if errors exist, from the encoder/decoder and analyzes the command word,
address, data flow direction, and message length. The data is then prepared for/accepted
from the subsystem interface.

Table 1.7.6 identifies the processes performed by each of the typical functional elements
within a 1553 environment A 1773 environment would provide similar functional
elements.

1.7.7. Speed.
The speed at which the 1553 bus operates is based on the load being placed on the bus.
The maximum number of bits per seconds is 1,000,000. Bus speed is currently 1 MHz.
Current bus speed for 1773 is identical to the 1553 bus; 1 MHz.

Bus loading calculations consist of analysis of the following data:

• Message/type

• Words/message

• Overhead associated with each message type

• Overhead associated with mode codes

• Litermessage gap

• Average response time

• Overhead associated with non-stationary master bus controller passing

The overhead constants to consider are:

command word

status word

response time

intermessage gap

mode codes wo data

mode codes w data

data words

non-stationary BM

20 microseconds (ms)

20 ms

2-10 (average 8) ms for 1553; 4-12 us for 1773

2-30 (average 20) ms for 1553; 4.0 us for 1773

20 ms (wo = without)

40 ms (w = with)

20 ms

(48 minimum) ms

1-63

Table 1.7.6. Terminal Functional Processes
Analog

Receive/Transmit
BIT/Word Processor

(encoder/decoder)
Message
Processor

Subsystem
Interface
Circuits

Receive Receive Receive Channel
selection
(notes: 1,2)

Signal limiting Receiver Command word
decode
(note: 1)

Data
sampling
(notes: 1,2)

Filter Sync detection Status word
decode
(note: 3)

Conversion
(notes: 1,2)

Threshold
detection

Data detection Address
recognition
(note: 1)

Subsystem
timing
(notes: 1,2)

Transmit
(note: 2)

Manchester error
detection

Mode execution
(note: 1)

Buffer
registers
(notes: 1,2)

Driver
(note: 2)

Parity check Word count
recognition

Calibration
(notes: 1,2)

Transmitter
control
(note: 2)

Bits/word count Message error
detection

Selt-test
(notes: 1,2)

Timer
(note: 2)

Transmit
(note: 2)

Transmit
(note: 2)

DMA to host
memory

Common Transmit control
(note: 2)

Word count
(BC)
(notes: 2,3)

Interrupt
lines

Bus coupling Sync/data encode
(note: 2)

Status register
(note: 2)

Control lines

Parity generation
(note: 2)

Built-in test

Clock generation Subsystem
interface control

Data address
Control registers

Memory buffer

Where:
Notel:
Note2:
Note3:

not used in Bus
not used in Bus
not used in Rem

Controller
Monitor
ote Terminal

1-64

1.8. High Speed Data Bus.
1.8.1. Overview and Intended use.
The HSDB provides a high speed message passing capability between architecture
elements. The HSDB is a fiber optic, linear token passing data bus capable of a 50 million
bits per second (MBPS) transfer rate. Typical application of the HSDB is communication
of high speed data, control, and message communication within military and commercial
applications.
The bus may be implemented as a single bus architecture, however, military applications
generally implement a dual -redundant bus architecture to enhance system reliability and
survivability.

1.8.2. Current Status.
Though the High Speed Data Bus (HSDB) is being used in commercial applications,
interest is high for its use in advanced military platforms. The Joint Integrated Avionics
Working Group (JIAWG) is developing a requirements specification for a linear token
passing multiplex data bus and associated data bus protocol. Advanced avionic platforms
are envisioning the use of the HSDB to reduce vehicle weight

Testing Annlication.

Maintenance and diagnostic efforts for advanced avionic platforms are using the HSDB to
communicate at high speed control information between system elements, and diagnostic
status/test information between subsystems. Typical system use of the HSDB in military
applications consists of a dual, redundant bus configuration to gather vehicle information
from engine diagnostics, subsystem performance, radar data, and testing applications. The
HSDB is also being used to provide a communications path for rapid transmission of
system software in support of reconfiguration applications.

1.8.3. Interface / Number of Pins.
General interface requirements characteristics associated with using a HSDB within
system designs fall into four specific groups:

• common characteristics,

• transmitter characteristics,

• receiver characteristics,

• and transmission media characteristics.

Common. Common characteristics associated with a transmitter, receiver, and medium
include the station I/O ports, optical wavelength and spectral bandwidth, bus data rate,
minimum preamble size, bus signaling rate, and minimum inter-transmission gap. Typical
units associated with these elements are identified in Table 1.8.3.

1-65

Table 1.8.: 5. Bus Element Characteristics

Description Units Requirement
Encoding Method Manchester II

Data Rate MBPS 50 +/- .01%

Signaling Rate MBaud 100 +/- .01%

Nominal Bit time nS 20

Minimiim Duration
Between Transitions

nS ' 10

System Minimum Inter-
transmission Gap

nS 280

Preamble Minimum Size Bit times 16

Optical Wavelength
Upper/Lower

nM 800-lower, 880-upper

Spectral Bandwidth nM 60

Transmitter. Typical characteristics associated with a transmitter include signal power
level (high/low), signal leakage power, maximum rise/fall times, pulse width distortion,
nominal bit time, minimum signal duration, and data streaming timer.

Receiver. Typical characteristics associated with a receiver include signal power input,
operating range, inter-transmission dynamic range, maximum rise/fall times, pulse width
distortion, nominal bit time, maximum signaling rate, and maximum bit error rate.

Media. Typical media characteristics associated with a fiber optic bus include core
diameter, maximum total dispersion, and min/max optical attenuation.

1.8.4. Architecture.

The bus consists of a set of stations connected by a broadcast transmission medium. Each
station which transmits shall be heard by all active stations. Stations accept transmissions
based upon either physical or logical addressing mechanisms. Physical network
configurations can exist with bus lengths of up to 1000 meters.

Access to the station shall be controlled by a token. The token shall be continually passed
around a logical ring superimposed on a linear bus. A station shall have sole access to
transmit on the media when it has possession of the token.

1-66

1

"\ r*
\ 1
\l

1
1

A
\
\

1- BIU
(7)
 . BIU

(10)
BIU

(1)

BIU
(3)

i i ii ik il

1 ' " 1 \
J ^

^
\
\

--1 ^

1

ir

\~
BIU
(12)
 , BIU

(15)

BIU

(11)

BIU

(2)
—

PHYSICAL BUS LOGICAL RING

Figure 1.8.4. High Speed Data Bus Architecture

Station Registers. Each station shall support the following registers:

• Next station Address range 0 to 127

• Maximum Station Address range 0 to 127

• Physical Station Address range 0 to 127

Station States. A station shall support the following functional states:

State Name General Actions

0 Off-Line no transfers or receptions

1 Idle waiting for token, msg, or BAT

2 Claim token try to claim the token

3 Check token address reception of a valid token frame

4 Send messages when the token is received

5 Pass token pass the token to the next station

6 Check token pass verify token is passed

7 Check message address reception of a valid message frame

8 Receive messages reception of valid data

1.8.5. Protocol.
Protocol within an HSDB environment can be thought of as consisting of the state of the
transmission medium and the message to be transmitted or received.

1-67

HSDB medium states consist of the following:

• Quiet/Idle shall indicate the state of the medium when no bus activity is
present.

• Active shall indicate the state of the medium when a signal is being
transmitted. .Valid activity is defined by the presence of at least three signal
transitions in a period of 4 bit times.

Messages transmitted or received over the HSDB medium shall consist of the following:

• Preamble is sent at the beginning of every message and is used to stabilize the
receiver to the incoming signal.

• Message frames contains a Start delimiter, frame control, source address,
message destination address, word count, information, message frame check
sequence, and an End delimiter. A Start delimiter defines the beginning of a
frame. This delimiter allows the receiving station to synchronize itself to the
frame. The End delimiter defines the end of a frame. This delimiter allows the
receiving station to terminate the reception of the frame. Data within the
message frames consists of logical '0' or T state encoded in Manchester n
biphase format.

• Token frame consists of a start delimiter, one bit frame control (set to
zero), token destination address, token frame check sequence, and end
delimiter fields.

• Claim token frame consists of a start delimiter, frame control, source
address, fill words, and end delimiter fields.

Each frame shall consist of a sequence of fields. There shall be no gaps between the
individual fields in a single frame.

1.8.6. Functions supported.

Stations supporting a HSDB environment shall support the following functions.

• Message Priority priority of messages shall consists of four levels; 0-
highest, 1,2, and 3-lowest

• Source address the address of the station transmitting a claim token
or message frame; this is the physical station address (PSA).

• Message destination address uniquely identifies the message
frame's destination address. It can specify a logical or physical address. There
is an indicator as to the type of addressing used (physical or logical).

• Broadcast each station shall support a broadcast mode in which
a message is received by all stations.

• Word count field specifies the total number of 16 bit words
transmitted. Field size is 0 to 4096 words.

1-68

• Message frame check sequence the ability to verify proper
transmission of each message shall be supported. This can be accomplished by
having the transmitter insert a message frame check sequence into the message
sent and having the receiver verify that the sequence is correct

• Token frame check sequence is similar to the message frame check
sequence except a token frame check sequence is sent and verified.

Within a HSDB environment, timers are used to limit the amount of time a station is in
control of the bus.

• Holding Timers is the amount of time a station may transmit message frames
after receiving the token is limited. This amount is user defined and can range
from 0 to 65,535 microseconds. General default value is 50 microseconds.

• Rotation Timers is the amount of time a station may transmit frames for a
particular priority level or any lower priority level. Priority levels are from 1 to
3. This amount is user defined and can range from 0 to 65,535 microseconds.
General default value is 400 microseconds for priority 1, 300 microseconds for
priority 2, and 200 microseconds for priority 3.

• Ring Admittance Timers controls when a station may be allowed to
enter the logical ring. This amount is user defined and can range from 0 to
6,553.5 milliseconds. General default value is 100 milliseconds.

• Token Pass Timer is a timeout value set to determine whether or not
the token was successfully passed on the logical ring. Valid range is 0 to 10.20
microseconds with a default of 10.20 microseconds.

• Bus Activity Timer is a timeout value set to allow a station to claim the
token after a specified time of no bus activity. Valid ranges are 0 to 2047
microseconds.

• Claim Token Limit Counter identifies the maximum number of times the
station is allowed to send a claim token frame without transitioning from the
claim token state. This amount is user defined and can range from 0 to 127
with a default of 4.

1.8.7. Speed.
The data rate of the HSDB is typically 50 +/- 0.01% million bits per second (MBPS). The
signal baud rate for continuous transmission on the fiber optic medium shall be 100 +/-
0.01% MBaud. The normal duration between transitions shall be 10 +/- 1 nanoseconds.
The optical receiver shall operate with a minimum inter-transmission gap of 280
nanoseconds. The maximum inter-transmissions gap shall be 500 nanoseconds.

1.9. IEEEP1394.

1.9.1. Overview and Intended use.

1-69

IEEE P1394 is a high speed serial bus designed for low cost systems. It is expected to be
used for interconnecting remote peripherals to high performance backplanes (such as
NuBus, Futurebus+, and SCI). It is a powerful, low cost, high-speed, 2-wire serial bus
which is compatible with parallel buses. The IEEE P1394 bus provides support for multi-
bus configuration, dynamic addressing and experiences low communications overhead.
Figure 1.9.1 illustrates an IEEE P1394 serial bus physical topology. Bus topology is
divided into a backplane environment and a cable environment. There is no requirement
that the bus have a set of environments. All bus nodes may be connected directly to the
backplane, or cable, or any combination of the two.

CPU I/O MEM

1 parallel bus

CPU

serial bus (backplane environment)

CPU I/O MEM CPU

ll j parallel bus

l_
se rial bus (ba ckpla neenvi ronn ne it)

serial bus (cable environment)

x
i/o i/o

Figure 1.9.1. P1394 Serial Bus Physical Topology

1.9.2. Current Status.

The Microprocessor and Microcomputer Standards Subcommittee working group,
sponsored by the IEEE Computer Society, is currently working on the High Speed Serial
Bus P1394 standard. Work is currently being performed to interface the proposed
standard with the IEEE 1149.1 standard.

Testing Annliratinn.

The IEEE P1394 high speed serial bus is envisioned to provide a possible low cost
communications interface to the IEEE 1149.1 Test Access Port and Boundary Scan
Architecture standard. Via the IEEE P1349 bus, test control and data could be
transmitted to the IEEE 1149.1 testing environment to verify/test system, module, and

1-70

integrated circuit designs. Results from testing would then be returned to higher
applications for test status assessment.

1.9.3. Interface/Number of Pins.

The IEEE P1394 bus interface consists of 3-pair shielded cables with terminators,
transceivers, and logic dedicated to each port. Two of the three twisted pairs are
individually shielded and carry the data signals. The third pair carries the power. The
twist rate of the cable is 36 to 44 per meter, with the maximum cable length being 2.0-m.
Currently, there is no minimum cable length.

The backplane interface includes the driver and receiver as well as the particular signal
lines. Devices connected to the bus backplane utilize two-electrical signals identified by
the various ANSI/IEEE bus standards. Drivers and receivers for these signals observe
conventions established by parallel bus standards; e.g., Futurebus, Fastbus and SCI.

1.9.4. Architecture.
The architecture of the IEEE P1394 serial bus consists of entities called nodes; a node
being an addressable entity which can be independently reset and identified. Figure 1.9.4
illustrates a module design which utilizes nodes connected to the serial bus. Several nodes
may be co-resident on a single module, and more than one function may be co-located on
a single node. Nodes are tied together with cables that lace a single connector plug on
each end. Two nodes connected together (full-duplex path) with a cable is called a
physical connection, and there can be up to 6 physical connections separating any two
nodes. The total cable length between any two nodes must be less than 10 meters.

The address scheme observed by the serial bus uses 64-bit fixed addressing. The upper 16
bits of each address is the node_id (allowing 64k nodes in a system). The higher-order 10
bits specify the bus_id and the lower 6 bits specify a node_offset. This allows an address
scheme for 1022 buses each with 63 nodes to be accessible.

System Element

I
i/o

I
Registers P

| Co-processor |
Memory

£
Registers ¥

System Bus

Figure 1.9.4. Module Node Architecture

1.9.5. Protocol.

1-71

The serial bus protocols are described as a set of three stacked layers; transaction layer,
link layer, and physical layer. A fourth element, the serial bus management, provides other
applications required by bus nodes. Figure 1.9.5 illustrates the connectivity between these
four elements.

c o
U

c
a>
E
CD
60
fO c

3
CO

*i_
CD

CO

Data

Control
Status

Control

D

Transaction

Status

Control

Control
c
o
U

Link Layer
lCvcleCntl.1

I Arbitration I 1 Pkt Trans. | | PktRec. I

Status

Data/Control/Status

Physical Layer Protocol
I Encode 1 | Clk Recovery | | Decode]

Physical Layer Data

Physical Medium Dependent

Figure 1.9.5. IEEE P1394 Bus Protocol Element Connectivity

Transaction Layer. The Transaction Layer defines a complete request-response protocol
to perform the bus transactions. Bus transaction types and actions are listed in Table
1.9.5. Data transfers can be from 1 to 2048 bytes with no address restrictions.

1-72

Table 1.9.5. Transaction Layer Transaction Types/Actions

Transaction Types

Read

Write

Lock

Transaction Actions

Request

Indication

Response

Confirmation

Description

data is transferred from a responder back to a
requester

data is transferred from a requester to one or
more responders

data is transferred from a requester to a
responder, operated on by the responded, and
then transferred back to the requester

Description

the action taken by a requester to start the
transaction

the reception of a request by a responder

the action taken by the responder to finish the
transaction

the reception of the response by the requester

Link Layer. The Link Layer defines a one-way data transfer service to the Transaction
Layer. It provides access to the medium, addressing, data checking, and data framing.
One Link Layer transfer is called a 'subaction'. There are two types of subactions:
Asynchronous and Isochronous (or channel).

• Asynchronous 0 to 2048 bytes of data and several bytes of
Transaction Layer information are transferred to an explicit address. The
subaction has three parts; 1) arbitration sequence, 2) packet transmission, and
3) acknowledgment

• Isochronous Subaction 0 to 256 bytes are transferred without explicit
addressing. Channel transfers are used for cycle responses where a form of
time division multiplexing provides an implicit addressing.

The Link Layer operations also have the request, indication, response, and confirmation
actions:

• Request the action taken by a link requester to transmit a packet to a
link responder

• Indication the reception of a packet by a link responder

1-73

• Response the transmission of an acknowledgment by a link responder

• Confirmation the reception of the acknowledgment by the link requester

Physical Layer. The Physical Layer translates the logical symbols used by the Link Layer
into actual physical signals on the different serial bus media. The Physical Layer has two
sublayers: the Physical Protocol Sublayer, and the Physical Medium Dependent Sublayer.
The backplane and cable environments have different Physical Medium Dependent
sublayers. The Physical Protocol sublayer performs the data encoding, decoding, and
clock recovery operations. The Physical Medium Dependent sublayer specifies the
physical (connectors and cables) and electrical interface (transceivers).

Serial Bus Management. Serial Bus Management provides the basic control functions
and standard control and status registers needed by nodes on the bus. Bus Management
provides many management facilities:

• Arbitration number/address assignment

• Cycle master arbitration the candidate with the most accurate clock will
become master

• Isochronous channel assignment

• Error control the bus will detect that there is an error but will not
necessarily retry any transfer.

1.9.6. Functions supported.

In addition to bus arbitration, the following services are provided by the four elements
associated with serial bus protocol.

Physical Sublayer Services.

Service Description

control request to perform low-level actions or obtain status

control confirm completion

arbitration request to send an arbitration symbol

arbitration confirm return status of the bus

state indication inform Link Layer of bus state change

data request inform Link Layer to send a data symbol

data indication inform Link Layer of arrival of data symbol

1-74

Link Layer (LL) Services.

Service Description

control request to perform low-level actions or obtain status

control confirm completion

status indication inform bus management of status change or event

sync request

sync indication indicate cycle sync packet is received

ISO request from upper layer to request LL to send ISO data
packet

ISO indication inform upper layer of arrival of ISO packet

data request from Transaction Layer to request LL to send
async data packet

data confirm completion

data indication defines transmission of data to the local
Transaction Layer

data response returned status (complete, pending, busyA,
busyB)

Service

control request

Transaction Layer (TL) Services.

control corifirm

status indication

data request

data confirm

data indication

data response

Description

to perform low-level actions or obtain status

completion

inform bus management of status change or event

from application to request TL to send a request

completion

informs the application of the arrival of a
transaction request

returned a response

1-75

Serial Bus Management Services.

Service

control request

control confirm

control indication

Description

from application to request Bus Manager to
perform various control actions

completion

indicates the status of the bus has changed

1.9.7. Speed.

The IEEE P1394 Serial Bus supports variable speed data transmissions of approximately
40 Mbit/sec between nodes separated by distances up to 10 meters.

1-76

2. TEST BUS EXTENSIONS

2.1. IC.
The use of the IEEE 1149.1 standard in integrated circuit (IQ designs and integration is
becoming more prevalent throughout industry. Extensions to the standard are being
investigated and developed to support extended testing capabilities. The envisioned
benefits from these efforts are:

• the ability to establish a consistent test instruction set throughout company
devices,

• compatible testing modes,

• reduced complexity in development of test and maintenance software tools,

• and reduced efforts in system integration and debug.

The following subparagraphs describe some of the work being performed to extend the
capabilities of the IEEE 1149.1 in support of testing applications at the integrated circuit
level.

2.1.1. Internal Scan.
One of the most widely used design-for-test practices for IC design is internal scan
design. Using internal scan design, an IC's application logic can be easily tested by
scanning test patterns through the design via a serial scan port to verify its logic
implementation.

The IEEE 1149.1 standard was designed primarily to provide a boundary scan test
architecture in ICs to facilitate board level testability. However, the 1149.1 architecture
was designed to be expandable so that other IC level test structures could be supported
as well. One of the test structure extensions that can be included in the 1149.1
architecture is internal scan design. This section illustrates how internal scan design can
be included in the 1149.1 architecture and accessed to effectuate testing of an IC's
application logic.

BASICS OF INTFttlMAT. SCAN DKSTGN.

In Figure 2.1.1-1 an example IC logic design is shown consisting of modules A, B, C,
D, E and F. All modules are sequential and operate synchronous to a common clock
input (CLK). Module A receives the primary inputs (PI) to the IC and module F
supplies the primary outputs (PO) from the IC. Intermediate modules B, C, D, and E
receive inputs from each other and from module A, and output to each other and module
F. Module A is directly controllable via PI and module F is directly observable via PO.
However, the inputs to and output from the intermediate modules are not directly
controllable or observable via PI or PO.

2-1

 »
B

 »

D

 ►

A F PI —»

.
c

_

E

CLK

; '

■PO

Figure 2.1.1-1. Non-Scannable IC Logic Design

In Figure 2.1.1-2 an example circuit model of each module is shown. Each module
consist of input combinational logic and output flip flops (FFs). The state of the output
FFs (OUTl-OUTx) is determined by the output response of the combinational logic to
input stimulus (INl-INx) at the clock time. What makes testing of the intermediate
modules difficult from the PI inputs and PO outputs is the fact that the state of each
intermediate module is dependent upon both external input from PI and from the
internal state of each module. Due to this situation, perhaps tens of thousands of test
patterns must be input to PI and output from PO to fully test the intermediate modules.

IN1

IN2

IIMx »

COMBINATIONAL

LOGIC

Clock

FF
- OUT!

FF
-* OUT2

FF
-* OUTx

Figure 2.1.1-2. Non-Scannable Module Circuit

2-2

To overcome this testing roadblock, modules B, C, D, E, and F can be designed to be
scannable as shown in Figure 2.1.1-3, and module A can be designed to be scannable as
shown in Figure 2.1.1-4. Module A, of Figure 2.1.1-4, includes scan FFs and
multiplexers on its inputs to allow the module to be controlled, during scan testing,
independent from the PI inputs. The conversion from the non-scannable module of
Figure 2.1.1-2 to the scannable modules of Figure 2.1.1-3 and 2.1.1-4 is simply the
replacement of the non-scannable FFs with scannable FFs, and the addition of input
scan FFs and multiplexers to module A.

IN1

IN2

INx

WS-

Clock

r

COMBINATIONAL

LOGIC

OUT1

-* OUT2

F
-» OUTx

-* SO

Figure 2.1.1-3. Scannable Modules B,C,D,E, and F

In Figure 2.1.1-3 and 2.1.1-4, a load/scan control signal (L/S) is required to regulate the
behavior of the scan FFs. When the L/S signal is in load mode the scan FFs operate as
normal FFs, but when it is in scan mode the scan FFs shift data from their serial input
(SI) to serial output (SO) in response to the clock input. Also, module A of Figure
2.1.1-4 requires a run/test control signal (R/T) to regulate the input multiplexers to
output either PI data or scan FF data to the combinational logic.

2-3

IN1

IN2

INx

R/T

L/S
Clock

SI

FF

FF .-

FF k-

JN

rk

1/

COMBINATIONAL

LOGIC

-* OUT1
FF

FF
-» OUT2

-+OUTx

-*SO

Figure 2.1.1-4. Scannable Module A

In Figure 2.1.1-5, a view of the IC's logic design is shown using the scannable modules
of Figure 2.1.1-3 and 2.1.1-4. The modules are connected serially together to form a
scan path from the IC's serial input (SI) to serial output (SO). The changes required to
the IC's architecture, in addition to the scan FFs, include; a clock multiplexer, a run/test
input (R/T), a test clock input (TCK), a load/scan input (L/S), a scan in input (SI), and a
scan out output (SO). R/T regulates the input multiplexers of module A and also
controls whether the system clock (CLK) or the test clock (TCK) is output from the
clock multiplexer to the module scan FFs. During normal IC operation, R/T is set to run
mode and CLK times the module scan FFs. During IC test operation, R/T is set to test
mode and TCK times the module scan FFs. During test mode, the L/S input regulates
the operation of the module scan FFs, allowing them to load and shift out test data.
During scan operations, SI inputs serial data to the ICs scan path and SO outputs serial
data from the ICs scan path.

SO

SI

SI-

CLK-

TCK-

R/T-

L/S-

"ST"

B
so

c
1 SO

"Str
D
si

Clock

SO

E
si

L/S

SO

•PO

-►SO

Figure 2.1.1-5. Scannable IC Logic Design

2-4

When testing is not required, the R/T and L/S signals are set to allow the IC to operate
normally. When testing is required, R/T connects the TCK to the modules and the L/S
signal is operated, in coordination with the TCK, to enable the scan path to load data
from its functional input, then shift data from SI to SO. The effect of the test mode is
that it simplifies the IC design to where all combinational logic sections are directly
controllable and observable via the scan path FFs. By operating the scan path to input
stimulus to the combinational logic and to capture response from the combinational
logic, the IC design can be easily and thoroughly tested. Also the scan path allows
testing the IC using a minimum number of test patterns, far fewer than the number of
test patterns required to test the IC via PI and PO. Further, the test patterns applied via
the scan path can be generated by automatic test pattern generation tools, etiminating the
time consuming task of manually creating the test patterns.

ACCESSTNft INTERNAL SCAN VTA TEEE 1149.1.

Internal scan design can be accessed via the 1149.1 architecture by designing the IC's
application logic to be scannable and defining an 1149.1 instruction for internal scan
access. In Figure 2.1.1-6 an IC is shown including the 1149.1 architecture. The
required components of the 1149.1 architecture include the boundary scan register,
bypass register, instruction register, and test access port (TAP). The serial interface to
the 1149.1 architecture includes a test clock (TCK), a test mode select (TMS), a test data
input (TDI), and a test data output (TDO).

SYSTEM
DATA
INPUT

APPLICATION

LOGIC

^INTERNAL SCAN PA"

f
BYPASS

H INSTRUCTION \-

I . TAP

SYSTEM
• DATA
OUTPUT

TDI TCK TMS TDO

Figure 2.1.1-6. Internal Scan in 1149.1 Architecture

In addition to the required 1149.1 components, the IC's application logic includes an
internal scan path, as described previously, that can be accessed to test the IC design.
The internal scan path is accessed by loading a user-defined instruction into the
instruction register that connects the internal scan path between TDI and TDO. The
instruction also places the IC in a test mode and enables the scan path to be controlled

2-5

by the TAP, similar to way the previous scan path was controlled by the R/T, L/S and
TCK signals.

During internal scan testing, the TAP receives control input from TCK and TMS to
cause test patterns to be scanned into the ICs internal scan path from TDI to TDO to test
the application logic. While scan testing of the application logic is in progress, the
boundary scan register acts to isolate the application logic from external interference,
and to prevent signals generated by the application logic during the test from being
output to external neighboring ICs.

Internal scan design is an effective method of testing an ICs application logic. The
1149.1 standard, while primarily designed for structural testing of board assemblies,
easily accommodates internal scan test approaches. This section has illustrated the
concept of internal scan design and how access to internal scan design can be achieved
via the 1149.1 standard.

2.1.2. BIST.

Built-Li-Self-Test (BIST) is a design for testability (DFT) technique that has gained
significant acceptance within the electronics industry as a means to deal with the
problems of testing complex chips, boards, multichip modules, and systems. BIST
approaches and architectures can complement boundary scan architectures to provide a
complete PWB and system test environment The implementation of both techniques is
becoming more widespread and BIST extensions to boundary scan implementations are
emerging.

Traditionally, when discussing BIST, chip-level BIST based on a linear feedback shift
register (LFSR) architecture typically comes to mind first. However, as more complex
electronics architectures have emerged, module and system level BIST architectures built
on top of boundary scan architectures are taking their place along with device internal
BIST. The IEEE 1149.1 test bus can be used to control device internal BIST, BIST on
a module logic cluster, or BIST on a module memory array. In addition to conventional
LFSR based approaches, a module may embed an 1149.1 scan controller to allow
embedded application of deterministic patterns.

BISTTechninnes.

There are many techniques used to implement BIST in components. A few of the most
common are pseudo random pattern generation (PRPG), parallel signature analysis
(PSA), serial signature analysis (SSA), and self-test state machines. All these techniques
or combinations may be used for BIST.

Test pattern stimulus is typically applied using PRPG, which is implemented by a free-
running linear feedback shift register (LFSR) that generates a unique pseudo random
sequence of test patterns. This pseudo random sequence of test patterns can be applied
to the circuit under test at-speed to exercise the logic with minimal overhead.

PSA (or SSA) usually is used in conjunction with PRPG to capture and compress the
output states of the circuit under test. PSA or SSA also is constructed from an LFSR,
which compresses a fixed number of parallel or serial output patterns into one unique

2-6

signature. At the completion of the test sequence, the signature is compared to a known
good signature to determine if the test passed or failed.

State machines also are used commonly to test circuitry that requires specific test
sequences or patterns. This usually includes random access memory (RAM) or
combinational logic. One example is the case of a RAM or register array that requires
the address to be sequenced as test patterns are written to and read from the array. State
machines also are used to start and stop PRPG/PS A based tests.

BTST Using the 1149.1 Test Bus and Boundary Scan.

When discussing BIST as related to 1149.1 test bus architectures, two areas need to be
addressed. The first area relates to embedded architectures which can autonomously
control embedded IEEE 1149.1 tests and the IEEE 1149.1 test logic. The second area
focuses on architectures which complement basic boundary scan logic for algorithmic
pattern generation and compression (e.g. PRPG, PSA).

In the simplest case, an IC, module, or system may be tested under external control using
an 1149.1 test bus controller to control the initiahzation, application, and comparison of
test sequences. This may be accomplished under discrete control by a 4-bit port of a
microcontroller or more easily by a Test Bus Controller (TBC) application specific
integrated circuit (ASIC). With the latter approach, the bus states can be controlled in
hardware and would not have to be sequenced explicitly. Additionally, the TBC device
could incorporate 'intelügence' to increase data throughput and further off load the
microcontroller or processor.

An integrated solution is possible by embedding the TBC in the system or module design.
This method, as shown in Figure 2.1.2-1, provides a capability for autonomous module
or system BIST. There are many methods to implement an 1149.1 embedded test
controller. Two methods include a simple state machine test controller and a
programmable test controller. Both can provide an autonomous embedded 1149.1 based
test for system startup self-test or commanded self-test. An embedded controller must
sequence the UUT through TAP states, apply stimulus data to TDI, capture response
data from TDO, mask any "don't care" bits, and compare the masked response data to the
expected data.

2-7

Embedded
Test Bus
Controller

^ IC1 % IC2

1149.1
?

IC4 s IC3

1149.1
V ^

Figure 2.1.2-1. Embedded 1149.1 Test Controller

A state machine based 1149.1 controller is simple if only a static configuration is needed.
This type of controller can be designed in an ASIC or FPGA. An external ROM could be
used to store the test data. The state machine generates addresses for the test data in
ROM and control comparator logic compares expected data to actual data. The test data
stored in ROM includes the TMS, TDI, TDO, and MASK values.

Alternately, a programmable test controller (PTC) can be implemented which is flexible
and intelligent A programmable test controller can utilize the intelligence and
programmability of a microprocessor to retrieve test stimulus from memory, write test
stimulus and control commands to the test bus controller, and read/compare/log response
data.

A PTC can provide several advantages over a simple state machine driven test controller.
Because of the intelligence and flexibility of a PTC, tests can be executed with different
logging modes, execution modes, and data compression.

A PTC can be implemented with a microprocessor or microcontroller, a TBC device, and
memory to store code and data. The test bus controller device performs the parallel to
1149.1 serial translations for both transmitted and received data and manages the 1149.1
TAP states of the UUT. The processor executes control code to fetch test data from
memory, transfer the data to the TBC, read received test data from the TBC, and perform
data comparison and/or logging, Basic block diagrams of a state machine based 1149.1
controller and a programmable test controller are shown in Figure 2.1.2-2.

2-8

STATE MACHINE BASED TEST CONTROLLER PROGRAMMABLE TEST CONTROLLER

MEMORY

1149.1
TEST DATA

DATA

i

ADDR

STATE MACHINE

' (STATE MANAGEMENT,
ADDRESS GENERATION,
COMPARISON, LOGGING)

IEEE 1149.1

MEMORY

CODE
1149.1
TEST
DATA

| ADDR

DATA

MICROPROCESSOR

IEEE 1149.1
TEST BUS

CONTROLLER

IEEE 1149.1

Figure 2.1.2-2. Embedded 1149.1 Test Controller Architecture

As mentioned above, a fixed length pattern file may be stored in onboard memory and
applied by the TBC. This method requires virtually no processing and, therefore, allows
a simplified TBC controller to be used. The drawback in this case is the amount of
memory required to store a potentially large test pattern set. For the second option, a
processor could apply algorithmically derived patterns and collect and/or compress the
results. In this case, very little memory is required to store test patterns, but a 'smarter*
controller is required to handle pattern application and collection. The pattern
application rate of the latter option could be slower if extensive processing is necessary.

When dealing with scan based tests, the data sets can quickly become extremely large if
the scan data for all devices in the target device's scan ring must be stored. Storing this
amount of data may become unfeasible for an embedded application. Fortunately, a
smart PTC can be implemented which scans the complete ring, but the test data need only
contain stimulus and expected response data for the device or devices under test. This
can be realized if the PTC manages the placement of stimulus and response data. The
PTC inserts leading and/or trailing bits to the stimulus and response data on-the-fly and
therefore the test data need not contain unused or don't care data. The actual data
scanned is the combination of any leading bits, the test data, and any trailing bits. The
result is a test data file which is more compact because the leading/trailing bit offsets are
generated on-the-fly rather than stored in the test data file. An example of on-the-fly
leading and trailing bits is shown in Figure 2.1.2-3.

2-9

STIMULUS RESPONSE

X xxxx
1 2345
XXXXX

\

20 BITS
DATA/PATTERN

v^

XXXXX
67890
XXXXX

SDR BITS

DR TRAILER OFFSET = 40

TRAILER BITS

PROGRAMMABLE
TEST CONTROLLER

DR HEADER OFFSET = 20

SDR BITS HEADER BITS

80 BITS
DATA/SCAN

TDO
IC1 IC2 IC3 IC4

TOI

(Assume each IC has a 20 bit data register)

Figure 2.1.2-3. Generating Scan Offsets On-The-Fly

In addition to an embedded controller that can manipulate a system's boundary scan
architecture, BIST architectures can be added to boundary scan cells at the pins of
devices within the system. This is possible by adding PRPG or PSA capability within
each boundary cell. While this requires more overhead, it is more efficient than adding
separate PRPG and PSA test logic. Just as boundary scan allows for both pins-in testing
and pins-out testing, the same technique can be applied to the PRPG and PSA cells. The
advantage is that no lengthy space-consuming test patterns are required, as is the case
where a TBC controls the test by applying and retrieving test patterns.

Additional benefits can be realized when boundary scan parts contain pattern generators
and signature analyzers to facilitate board level BIST. For example, some commercially
available boundary scan parts contain LFSRs on their outputs for pattern generation and
parallel signature analyzers on their inputs for response compression. Pins-out testing
can be accomplished by generating test patterns via PRPG at the output pins and
collecting results via PSA at the next ICs input pins. An example of using boundary scan
for BIST is shown in Figure 2.1.2-4.

2-10

Figure 2.1.2-4. Using Boundary Scan for PWB BIST

Even if only a few such components exist on a board, they can be used to create BIST on
that board if well positioned, such as at bus interfaces or interfaces to embedded regular
arrays on the board (RAM, ROM, etc). For example, there have been cases where BIST
has been implemented on a very complex mixed signal board by simply adding a
controller to an ASIC having boundary scan and replacing just a few existing interface
parts with BISTed boundary scan interface parts. With the final addition of a few loop-
back capabilities at various points and a specialized BIST response evaluator for the
analog portion of the test, the board can be tested and diagnosed entirely with BIST,
aided by a simple, PC-based tester.

If there is no embedded TBC in the system, IC BIST may be initiated in hardware via a
memory-mapped interface or by a discrete pin. The IEEE 1149.1 specification states that
the TAP must be in RUNTEST/IDLE mode to execute BIST. However, if no TBC is
driving the bus, the TAP will remain in the RESET state. To execute BIST, control must
be taken from the TAP so the BIST controller can manipulate the test logic. This may be
as simple as multiplexing the TAP signals and the BIST controller.

2.1.3. Real-time event qualification.

As semiconductor technologies continue to increase the speed at which ICs operate, at-
speed functional testing of boards and systems becomes more difficult. Traditionally,
boards are tested at-speed using high performance functional testers and probing fixtures.
However, as physical access to electronic circuit assemblies diminish, probing becomes
difficult and in some cases impossible. Therefore, a new approach is needed to allow at-
speed board testing to be performed by IC resident test logic, instead of external testers
and probing mechanisms.

While 1149.1 describes how the Sample/Preload instruction is used for system data
sampling, an attempt to use it will quickly reveal problems not addressed in the standard.

2-11

One of the problems involves synchronizing the test clock (i.e. the clock that times the
test architecture) to the system data traversing the boundary of the IC, so that system
data may be sampled in a stable, non-transitioning state. If a system clock synchronous
to the data transfers is available, it can be substituted for the test clock by adding clock
switching circuitry on the board design to solve this problem.

Another problem is that the system clock switched into the test clock may operate too
fast for the 1149.1 standard's test access port (TAP) interface. The upper clock rate for a
TAP is technology dependent, but a 15 to 20 megahertz clock is sometimes an upper
limit on some logic families. If the system data transfers through the ICs boundary at a
rate which exceeds the maximum TAP clock rate, it will be impossible to execute the
Sample/Preload instruction because the TAP will be unable to operate.

Still another problem involves qualifying when data is to be sampled. In order to obtain
meaningful data, the sample operation should be timed with the occurrence of an
expected event Sampling data synchronously, but at random does not provide any useful
test information. By adding qualification and control logic to the board design, the
sample operation can be timed with a board level event, making the instruction useful.

From the description of these problems, it is clear that it is a challenge to use the
Sample/Preload instruction for at-speed system data sampling. The amount of additional
logic that must be implemented on the board to make this instruction useful is impractical
in most cases. It is also important to remember that the data sample rate is dependent on
the maximum test clock rate of the slowest IC TAP on the board design.

EVENT QUALIFICATION.

An event qualification architecture (EQUAL) has been developed to provide a method of
enabling test logic in a IC for the purpose of executing at-speed test operations. While
the EQUAL architecture can be used to control a variety of different IC resident test
structures, combining it with the 1149.1 boundary scan is ideal for testing at-speed data
transfers between ICs on a board. EQUAL'S ability to enable boundary test logic to
capture at-speed data transfers between ICs allows testing for timing sensitive and/or
intermittent failures that may occur during system operation. These types of failures are
difficult if not impossible to detect without probing the board design.

EQUAL ARCHITECTIIRE.

The EQUAL architecture in the IC of Figure 2.1.3-1 consists of a controller, referred to
as an event qualification module (EQM), and a series of event qualification cells (EQC),
each cell is associated with an IC input/output signal. When enabled, the EQUAL
architecture takes control of the ICs boundary test logic and causes it to operate
synchronous with the host IC during test. While controlled by the EQUAL architecture,
the boundary test logic can perform at-speed data sample or signature analysis test
operations concurrent with normal IC operation. After the test is complete, the EQUAL
architecture is disabled, allowing the boundary test logic to be controlled by the 1149.1
TAP.

2-12

INPUT

EQI

EQC

SYSTEM
LOGIC

CONTROL

CMPOUT

EQC

EQM
CMPOUT

TAP

-* OUTPUT

EQO

MM
TDI TMS TCK TDO

Figure 2.1.3-1. Event Qualification Architecture

Event Qualification Cells.

The EQCs contain compare circuitry and scannable latches for storing start, stop, and
mask compare bits. The EQCs have inputs for receiving the boundary signal to be
compared and for receiving control from the EQM. The EQCs have a compare output
(CMPOUT) to transmit the result of the compare operation to the EQM. When a match
occurs between the boundary signal and the start or stop compare' bit, the CMPOUT
output transmits a match signal to the EQM. The EQC compare circuitry can be masked
so that the EQC outputs a match signal on CMPOUT regardless of whether a match
occurred between the pin signal and selected compare bit. The EQCs mask bit allows
assigning "don't care" conditions to a boundary pin signal that is not required in the
qualification of a particular test operation.

Event Qualification Module.

The EQM is a state machine that can be enabled to control test logic in the IC design.
The EQM has inputs for receiving the CMPOUT signals from the EQCs, an external
event qualification input (EQI) signal, and scan access control signals from the TAP. The
EQM has outputs for controlling test logic and EQCs and for outputting an external
event qualification output (EQO) signal. While not shown in Figure 2.1.3-1, the EQM
receives one or more system clocks from either the internal system logic or from an
external system clock input. The system clock input to the EQM is synchronized with the
boundary data transfer to allow valid data sampling.

Inside the EQM the CMPOUT inputs are combined into one composite compare signal.
By monitoring this composite compare signal the EQM can sense when an expected
pattern has occurred at the boundary of the IC to start a test operation. Alternately, the
EQM can monitor the EQI input instead of the internal compare signal to start a test
operation. The EQI input is used when qualification of a test is not based only on the

2-13

local boundary conditions of the target IC, but rather over a range of IC boundary
conditions and/or other signals generated on or input to the board design.

EOM TEST PROTOCOLS.

The EQM has eight test protocols that can be selected and used to perform testing. The
eight protocols are:

1. Protocol 1 This protocol allows for testing in response to an Nth event, and
repeating the operation M times.

2. Protocol 2 This protocol allows for testing during an Nth event, and repeating
the operation M times.

3. Protocol 3 This protocol allows testing in response to a first Nth event,
stopping storage in response to a second Nth event, and repeating the
operation M times.

4. Protocol 4 This protocol allows for testing in response to a first Nth event,
stopping storage after N clocks in response to a second Nth event, and
repeating the operation M times.

5. Protocol 5 This protocol allows for testing for N clocks in response to an Nth
event, and repeating this operation M times.

6. Protocol 6 This protocol allows for pausing for N clocks in response to an
Nth event, then testing for N clocks, and repeating this operation M times.

7. Protocol 7 In response to an Nth event, this protocol allows for testing for N
clocks, then pausing for N clocks, and repeating the testing and pausing for
M-l times.

8. Protocol 8 In response to an Nth event, this protocol allows pausing for N
clocks, then testing for N clocks, and repeating the pausing and testing steps
M times.

Protocols 1, 2, and 3 will be described in detail in this section. A protocol 1 operation
allows a test operation to occur once in response to an event. A protocol 2 operation
allows a test operation to occur while an event is present. A protocol 3 operation allows
a test operation to be started in response to a first event and stopped in response to a
second event. The test operation referred to in the protocols can be used to control any
type of test logic structure residing in the host IC. However, in this section the protocols
are used to control an ICs boundary test logic.

2-14

INPUT

EQ1

EQC

SYSTEM
LOGIC

CONTROL

CMPOUT

EQC

EQM
CMPOUT

TAP

IIM
TDI TMS TCK TDO

«■ OUTPUT

>EQO

EVENT

TEST
SAMPLE 1

Figure 2.1.3-2. EQUAL Protocol 1

Protocol 1 Description.

In Figure 2.1.3-2, a protocol 1 operation is used to take a snapshot sample of the data
passing through the ICs boundary at a qualified point in time. To set up a protocol 1
operation, the EQCs at the ICs boundary are first scanned with an expected boundary
pattern. This operation is similar to setting up the qualification conditions on a logic
analyzer pod connected to the boundary of the target IC. Since only a single event needs
to be detected using this protocol, only the start bit in the EQCs is used. Also if one or
more pins on the IC are not required in the event qualification process, the mask bit in
their EQCs can be set to force a match output on the CMPOUT signal.

After the expected boundary pattern is loaded, the EQM is scanned to load the protocol 1
command. After the command is loaded the EQUAL architecture becomes armed and
begins polling for the expected event. Since the system clock driving the EQM controller
is synchronized to the boundary data transfers, each boundary data pattern is compared
against the expected data pattern. When a match is detected the EQM controller issues
control to the boundary test logic to perform a data sample operation. After the test
operation is complete, the sampled data is scanned out for inspection via the 1149.1 TAP.

2-15

INPUT ■

EQI

EQC

SYSTEM
LOGIC

CONTROL

CMPOUT

EQC

EQM
CMPOUT

TAP

till
TDI TMS TCK TDO

■ OUTPUT

EQO

EVENT

TEST PSA

Figure 2.1.3-3. EQUAL Protocol 2

Protocol 2 Description.

In Figure 2.1.3-3, a protocol 2 operation is used to take a signature of the data passing
through the ICs boundary while an event is present. During this test operation the
boundary test logic is setup to operate as a parallel signature analysis register (PSAR).
The setup procedure for this protocol is identical to protocol 1.

After the expected boundary pattern is loaded, the EQM is scanned to load the protocol 2
command. After the command is loaded the EQUAL architecture becomes armed and
begins polling for the expected event. When the event is detected the EQM controller
issues control to enable the boundary input and output PSARs to operate with the system
clock to collect signatures of the data passing through the ICs input and output boundary
while the event is present. After the test operation is complete, the signatures are
scanned out for inspection via the 1149.1 TAP.

2-16

INPUT

EQI

EQC

SYSTEM
LOGIC

CONTROL

EQC

CMPOUT
EQM

CMPOUT

TAP

r~i i r
TDI TMS TCK TOO

-►OUTPUT

•EQO

EVENT

TEST

START STOP

PSA

Figure 2.1.3-4. EQUAL Protocol 3

Protocol 3 Description.

In Figure 2.1.3-4, a protocol 3 test is used to take a signature of the data passing through
the ICs boundary over a window of time determined by a start and stop event. During
this test operation the boundary test logic operates as a parallel signature analysis
register. The setup procedures for this protocol is identical to protocol 1, except that
both the start and stop compare bits in each EQC are used to allow comparing against
both a start and stop boundary pattern.

After the expected boundary patterns are loaded, the EQM is scanned to load the
protocol 3 command. After the command is loaded the EQUAL architecture becomes
armed and the EQM outputs control to the EQCs to compare the data passing through
the ICs boundary against the expected start pattern. When a match occurs, the EQM
outputs control to enable the PSARs to collect signatures and to cause the EQCs to begin
comparing for the stop pattern. "When the EQM detects the occurrence of the stop
pattern, it outputs control to disable the PSARs from collecting signatures. After the test
operation is complete, the signatures are scanned out for inspection via the 1149.1 TAP.

fiLQPAl, EVENT QUALIFICATION,
While local IC qualification, as previously described, serves many testing needs, there are
times when the qualification of a test needs to be expanded beyond the boundary of the
target IC. Increasing the number of boundary signals participating in the qualification
process improves the resolution as to when a test operation is enabled. For example, the
signals at one ICs boundary may not provide sufficient qualification for a particular test
operation. However, by combining the boundary signals of neighboring ICs with the
boundary signals of the target IC, a global qualification mode is obtained which can be
used to more accurately enable the test operation.

2-17

In Figure 2.1.3-5, a global qualification example is shown. During global qualification
the EQO signal from each IC is set to output the result of the IC's local boundary
compare operation. The EQO signals from all the ICs are input to the voting circuit so
they can be combined into one composite global compare signal. Any IC that does not
participate in the global qualification sets its EQO output to a state that will not interfere
with the operation of the voting circuit. The output of the voting circuit is fed back into
each IC in the circuit, via the EQI signal, to allow the EQMs to monitor the global
compare signal.

Each time a match occurs across all the IC boundaries, the voting circuit outputs a global
compare signal back to each IC. The target IC(s) respond to the global compare signal
to execute a predetermined test operation. If a protocol 1 or 2 type qualification is used,
the voting circuit outputs a single signal to enable a test operation. If a protocol 3 type
qualification is used, the voting circuit outputs a first signal to start a test operation and a
second signal to stop the test operation. By monitoring the event (EVT) output the
1149.1 test bus controller can determine when the global test operation is complete so
that the test results can be accessed via scan.

IN OUT

1 I ! I
TCK TMS TDI TDO EVT

Figure 2.1.3-5. Global Event Qualification

EOIIAF. APPI TfAT^^,

The ability to non-intrusively monitor an operating circuit or system using only the
1149.1 test bus and an interrupt as interface, has many attractive applications. One
benefit of this approach is that the test equipment requirement in many instances can be
met with a low cost, portable computer with software tools for accessing 1149.1
compatible components. The following applications illustrate some of the uses of this
approach in different areas of testing.

2-18

Functional Testing Applications.

Testing system logic for at-speed functionality can be very challenging. Blending a
traditional functional test approach in with the ability to utilize an ICs boundary test logic
to collect at-speed boundary signatures provides an alternative method of diagnosing
functional failures. For example, if a board designed with ICs implementing the EQUAL
approach fails a functional test, the boundary signatures of each IC can be scanned out
and compared to expected values. By determining which boundary signature(s) failed,
the fault can be traced back to one or more of the ICs on the board design. Sometimes
the boundary signatures may reveal an error condition not detected by the functional test.
In this case the technique can be used to improve the fault coverage of a functional test.

System Integration Applications.

During system integration, hardware and software sections of a system design are merged
together to complete the last phase of development. The typical approach used during
system integration is to utilize external logic analyzers and other test instruments that can
view the at-speed operation of the system. While the EQUAL approach cannot
completely eliminate the need for external test equipment it can provide improved
visibility into the internal components of a system. The EQUAL approach can be used to
enable data sample or signature analysis operations at potentially all the IC boundaries in
a system. Having such an improved view of the system can play a key role in reducing
the amount of time and cost required for system integration and debug.

Environmental Testing Applications.

Environmental testing is performed on most high end commercial and military systems.
This test is designed to prove that the system operates properly in all anticipated
environments. Usually the system under test is sealed and the tester can only monitor its
primary outputs. If a system fails in a particular environment it is difficult to duplicate the
cause of the failure when the system is dismantled and retested outside the chamber. By
using EQUAL architecture, at-speed boundary information can be obtained from each IC
in the system while it is in the environmental chamber. Thus an environmental related
failure can be more easily detected and diagnosed, improving the quality and reliability of
the system.

2.1.4 Embedded Software Emulation and Debug via IEEE 1149.1

The IEEE 1149.1 standard lays the foundation to new approaches to software/hardware
integration and debug for systems implementing embedded processors.

Traditional emulation approaches.

Traditional approaches for debugging systems with embedded processors utilize a
technique called 'emulation', which involves the physical substitution of an embedded
processor with a substitute test facility (See Figure 2.1.4-1). The common name for this
is In-Circuit-Emulation (ICE). Using an ICE provides the low-level control of the
system which is required for software/hardware integration and debug.

2-19

UUT

ICE

Controlling PC

Processor Socket

Figure 2.1.4-1. PC Based Test Facility

The use of an ICE requires the replacement of the processor with a large interface pod.
This pod provides the timing and event qualifications required for software and
hardware debugging of the target. The following features are usually provided:

• Software breakpoints - Stopping on program instructions within the RAM
memory space. Accomplished by instruction replacement.

• Memory breakpoints - Stopping on accesses to/from the processor's memory
space (RAM, ROM).

• Hardware breakpoints - Stopping on processor events; interrupts, control
lines, hardware events or signals.

• Real-time instruction trace.

While the ICE provides many necessary and useful features, it comes at some expense.
The most technically imposing feature is that the system is not using the real processor
during the debug cycle. After system debug, when the real processor is returned, new
problems often arise. These new problems cannot be found using the ICE, since the
ICE masks the problem.

Other restrictions imposed by the traditional ICE include:

• The target CPU must be socketed and not conformally coated.
• A large pod must be placed near the system processor socket usually

requiring a board extender for physical access.
• The ICE must be in close proximity to the processor, usually within a few

feet. This may require hanging the ICE unit over the processor.
• The high cost of the ICE primarily due to the design using high speed

memory and timing logic.
• Internal processor must be disabled.

1149.1-haseri capabilities.

The introduction of the IEEE-1149.1 scan standard provided a new way to approach the
problems of system debug. The standardized access provided by IEEE 1149.1 provides
an infrastructure for 'Embedded Emulation' that allows debugging features similar to
traditional ICEs without the need for processor replacement or board extenders. Instead
of processor replacement, the processor functions are controlled and observed via the

2-20

1149.1 test bus. The need for a large processor replacement pod and close proximity of
the tester has been eliminated. Also, the cost of the debugger is reduced.

Figure 2.1.4-2 illustrates the control mechanism for an embedded emulation capability.
In this architecture, access to the process is provided by IEEE 1149.1. Access and
control for the 1149.1 test bus is accomplished via a PC-based system which contains
1149.1 control hardware and software. This approach allows a common test controller
for the 1149.1 test operations and the processor emulation functions.

UUT

Controlling PC

Embedded Processor

Figure 2.1.4-2. Embedded Emulation Control

Debugging using the actual system processor minimizes cabling, timing and emulation
issues and allows for remote testing, such as environmental chamber testing, sub-system
testing, or final module testing.

The use of 1149.1 also provides the opportunity to perform simultaneous debugging of
multiple processors and access to other test devices. This is becoming very important as
systems use more processors.

Scan Based Debuggers.

Scan based debuggers can offer many of the features found in ICE systems. The main
limitations come from limited or no internal trace memory. The following features can
be embedded in scan based debuggers:

Read/write memory available to the processor.
Read/write general purpose processor registers.
Read/write processor control registers.
Resetting the processor.
Starting/stopping the processor.
Software breakpoints in the RAM memory space.
Hardware breakpoints, if the processor supports them.
Internal trace, if supported.
Cache control.
Single stepping the processor.
Easy interface for downloading object code or data to memory.
Disassembler.
High-level source code debugging, if object code debug information is
present.

2-21

• Simple hardware interface board on host debugger computer.
• No target monitor code or other code modifications required.
• No target processor resources required; memory, I/O ports, interrupts.

Figure 2.1.4-3 illustrates potential user interface features for an embedded emulator.
From this interface the user can control software execution, examine actual execution
steps, and view registers.

toad Break Waid) Memory Color Map
. File: quad.c *j^w^_
0001 main()
0002 {
0001 printf("lii main program"),
0004 }
— COMMAND —

Emulator Version 4.4-1.6

CPU» STBP

PC 0000
^,

RO 0D50
R1 UCCO
R2 0A3S

* DISASSEMBLY

80982 B 08700080 c*int00: LDP

80982C 08349829 LDI

809821) W!0b0014 CMI'I

80982E 6a05000c BZ

0000000 0000 1111 1001 .
0000007

Figure 2.1.4-3. Embedded Emulator User Interface Features

The resolution of functions that can be performed is related to the level of scan
implemented. While many emulation functions can be executed on a processor
implementing only boundary scan at the pins of the device, a finer level of debug
control is possible when internal scan is implemented in the device at strategic locations
to control/observe registers, etc. For example, when a hardware device (e.g.
TMS320C40) is designed with embedded emulation as a requirement, a powerful
support environment can result from the boundary scan, internal scan, and support tools.

The applications of multi-processor modules are becoming more widespread,
particularly in digital signal processing applications. As illustrated in Figure 2.1.4-4,
the control of a multi-processor module can be effectively achieved through the use of
boundary scan and embedded emulation. In this illustration, individual windows can be
displayed for individual CPUs; the CPU1 window is stepping through source code and
the CPU2 window is displaying disassembled instructions. Global windows control the
user interface display and coordination between the embedded emulation features.

2-22

CPU1 CPU2

1149.1 Jl CPU3 CPU4

wmmmmm~~~~ ~"
_ File: quad.c

0001 mainO
10002 {

0003 printifln main prugrW);
0004 }
— COMMAND
Emulator Version 4.4-1.6

CPU1» STEP

r PL

PC 0000
RO 0D50
R1 OCCO
R2 0A35

load Break; Watch Memory Color Map
- DISASSEMBLY
80982B 08700080 cNntOO: LDP
80982C 08349829 LDI
80982D 0001)0014 CMPI
80982E 6a0S000c BZ
— COMMAND

Emulator Version 4.4-1.6

CPU2» STEP

0000000 0000 1111 1001,

0000007

- Global Debugger Information ■

Croup:
Total CPUs:
Breakpoint

Directory:

Y
2
Local
C:\C30HLL

Sync: On
Events: On

Logging: On

CPU Debugger
Name Status CRP Echo

Event 0
Trigger

1 CPU1 Stepping DY
2 CPU2 Stopped Y

On
Off

C30 -— 1 C30 *

f Global Debugger Command ■
Command: .sync on
Command: .log testlog
Command: .step
Command: .run

Figure 2.1.4-4. Multi-Processor Embedded Emulation Control

While Figure 2.1.4-4 illustrates an advanced application, more basic applications of
boundary scan can achieve significant payback for embedded software/hardware
integration and verification. Figure 2.1.4-5 shows an application in which boundary
scan devices surround an embedded EPROM in a system. Utilizing the boundary scan
devices surrounding the EPROM, the address and control pins of the device can be
manipulated and data from the data pins sampled. This simple implementation gives
users a great deal of control in executing and observing the system. The user can single
step through the EPROM, execute a range of EPROM code, view the EPROM contents,
or if the surrounding boundary scan devices have PRPG/PS A capabilities, quickly verify
the EPROM contents via CRC.

2-23

7t
MICROPROGRAM

CONTROLLER

ADDRESS HITTER

I
MICROPROGRAM

MEMORY
(EPROM)

I
l'IITI INL" REGISTER 4

CLOCK

| | BOUNDARY SCAN

(^LOGIc3

OUTPUT REGISTER:

ALU

Figure 2.1.4-5. Using Boundary-Scan during System Debug

Scan Limitations.

The use of 1149.1 scan for processor debug can offer many unique features, but it also
has some limitations. These limitations are imposed by the separation of the scan clock
from the system clock and the serial nature of scan.

Scan-based embedded emulation may not provide the hardware timing and real-time
instruction trace features of the traditional ICE. Also it may not allow the breakpointing
on data accesses or breakpointing of code in ROM. These limitations can be overcome
if the processor contains internal support for hardware breakpoints.

The real-time tracing and timing features are especially useful to the hardware engineer,
during system integration. This deficiency can be overcome by using a logic analyzer
with scan. In fact the debugging software could provide control of the logic analyzer.
The real-time issues may also be solved by adding 1149.1 scannable support chips, such
as the Digital Bus Monitor, which contain event qualification features described
previously.

2.1.5. Fault Emulation.

Emulation of physical faults is a new approach to testing systems. The IEEE 1149.1 test
bus and boundary scan architecture makes this technique even more powerful through the
capabilities it provides to control and observe circuitry at the node level. The following
paragraphs discuss some of the embedded capabilities which are required for enhanced
fault emulation, including the IEEE 1149.1 test bus and boundary scan architecture as
well as, design for testability, hardware Built-in Self Test (BIST), and software Built-in
Test (BIT).

Fault emulation (or virtual fault insertion) is a viable method to supplement or replace
physical fault insertion to verify BIT/Diagnostic software and hardware. Additionally,
fault emulation may be useful for applications hardware and software testing and to verify

2-24

hardware/software robustness and fault tolerance. Some of the key benefits of fault
emulation are:

• The ability to model faults on actual hardware.

• The ability to inject faulty states into systems with no physical modifications
or damage.

• The ability to inject faults into systems when physical fault insertion is
impossible (i.e., internal silicon, sealed packages ,etc).

BIT VERIFICATION.

Verification of Built-Li-Test (BIT) hardware and software fault detection and isolation
capabilities has always been a nontrivial task. In the past, BIT verification has been
accomplished through time and labor intensive engineering analysis or via physical fault
insertion as outlined in MIL-STD-470 Task 203 (Maintainability Demonstrations).
Attempts have also been made to fault simulate BIT, however many designs exceed the
capabilities of fault simulators because of design complexity, number of test patterns, or
time to execute.

Physical fault insertion may not be an attractive option because it is time consuming and
may permanently damage expensive or limited hardware. Additionally, new high density
surface mount packaging techniques may make physical fault insertion difficult if not
impossible.

As mentioned above, three common methods have been used to verify test effectiveness
including, fault simulation, engineering analysis, and physical fault insertion. Each has
advantages and disadvantages which will be addressed below. Another key parameter
which must be measured is the false alarm rate. False alarms must be measured in real-
time under actual operating conditions. None Of the three methods above address the
issue of false alarm verification.

FAIITT SIMULATION.

Fault simulation has been used at the IC level and on individual PWBs using stimulus
developed for design verification or PWB ATE tests. This is useful for verifying
manufacturing tests, but not for measurement of test stimulus generated by the embedded
system BIT. Most systems rely on embedded BIT software to discover faults and
identify their location at power-up, on-command, and/or as a background task. A power-
up BIT applying 50 million clocks to a 140K gate PWB would only require 5 seconds to
execute in real-time. A fault simulator on the other hand, simulating execution of the
BIT, may require many months or years to perform a fault simulation with as many
clocks.

Even hardware accelerators do not solve execution time problems with very large
designs. For example, one complex PWB design was estimated to require over 360 days
to fault simulate BIT using a fast hardware accelerated fault simulator. Other issues
concerning fault simulation are that all faults are weighted equally, whereas most BIT

2-25

requirements are weighted by failure rate, and available simulators lack the ability to
provide a PWB fault isolation grade.

ENGINEERING ANALYSTS.

Engineering analysis has been used to both allocate BIT coverage and estimate the
effectiveness of BIT. This method can be performed at a high level, for instance at the
block or functional level, or at a low level, such as the device or gate level. Low level
analysis requires detailed knowledge of both the hardware and of the BIT software and is
typically performed by the BIT engineers. The major drawback is the time and labor
required to perform an accurate and detailed analysis. This method is also dependent on
the engineering expertise and objectivity of the engineer performing the analysis.

PHYSICAL EAIJLT INSERTION.

Physical fault insertion has been used for many years to verify BIT fault detection and
isolation. This is a straightforward but labor intensive task which involves manually
inserting faults, such as stuck-at 1, stuck-at 0, and stuck-opens, in the hardware under
test to verify whether BIT correctly discovers the fault and identifies its location. The set
of faults selected is statistically based on the total number of faults and the failure rate
distribution in the system under test. The fault set is also limited to faults which can be
physically inserted (at IC pins or PWB nodes). This represents only a small percentage of
the total faults which can occur. Cost, time, and physical access limitations further
restrict the number of faults which can be inserted. Fault insertion has been performed by
lifting or cutting IC pins and PWB etch or by driving a circuit node to VCC or ground.
This may permanently damage some components or PWBs and makes this method
unattractive in most cases. Figure 2.1.5-1 illustrates some common physical fault
insertion methods on a PWB.

PIN LIFTED ADJACENT
PIN SHORT

Figure 2.1.5-1. Common Physical Fault Insertion Methods

2-26

FAITIT EMULATION.

Fault emulation, or virtual fault insertion, is a technique which simulates a faulty state in
the hardware under test. This method changes the state of the hardware without the
application or BIT software being aware of any perturbation. An analogous scenario
would be a computer running a print spooler as a background task while a
communications program runs interactively in the foreground. The user and the
communications program would not be aware that the print task is executing because it
operates independently of the current foreground task. Similarly, fault emulation would
allow a faulty state to be introduced while the CPU continues to execute applications
software. Fault emulation would also be useful to verify system resistance and response
to false alarms by injecting single event upsets into the hardware.

This technique is possible if all or some key portions of the design incorporate internal
scan and/or the IEEE 1149.1 test bus and boundary scan architecture. While this
technique is not an inherent feature of boundary scan, many systems can be controlled via
scan to provide this capability.

FATTTT FMITTATTON VTA KOTINfiARY SCAN.

As designs become more dense, physical fault insertion becomes less practical. Some
designs are being implemented with hybrid modules and silicon-on-silicon technology.
This practically eliminates any possibilities for physical fault insertion. However, with the
increased use of the IEEE 1149.1 test bus and boundary scan architecture, much
controllability and observability is regained. Via boundary scan and proper design rules,
the hardware under test can be controlled such that faulty states can be introduced while
BIT software and embedded applications are executing. Hardware can be controlled
either through boundary scan of an ASIC or by incorporating ICs with boundary scan in
key areas of the design. This level of hardware control is not only useful for fault
emulation, but also design verification, integration and testing.

Figure 2.1.5-2 illustrates the basic process of fault emulation. This figure shows a timing
diagram consisting of clock and enable signals and a data bus. To insert faulty data in the
system the system must first be halted (in this case by putting the clock buffer in
boundary scan mode). Next, faulty data is scanned into the scannable data buffers and
driven on the data bus. Then the data bus is enabled and clocked which causes the fault
data to be latched in the system. Finally, the system is returned to normal operation by
releasing the clock signal and allowing the faulty data to be propagated through the
system. This method can be used to verify BIT effectiveness, hardware/software
robustness and fault tolerance.

For another example, consider a state machine which implements illegal state checking
and is buffered by boundary scannable input latches as shown in Figure 2.1.5-3. The fault
emulation scheme can be applied step by step as shown in the figure.

2-27

CLOCK

ENABLE

DATA

rLTLn......j.n ruui
a) (3) (4)

4.
(2)

y
_

NORMAL DATA K^Y FAULTY V^^fl
, * / . DATA \ / .

PROPAGATE
FAULTY DATA

NORMAL

OPERATION

y vi / vi
|V | A/~

FAULTY

STATE

NORMAL

OPERATION

1) HALT SYSTEM CLOCK

2) SCAN IN AND DRIVE FAULTY STATE

3) ENABLE & CLOCK THE FAULTY DATA

4) RELEASE SYSTEM CONTROL

Figure 2.1.5-2. Fault Emulation Timing Diagram

After the fault is injected, the faulty state will propagate through the state machine and, if
the error detection function is operating correctly, it will generate an error condition. If
scan is also implemented internally, additional errors can be introduced in the internal
logic.

For processor based designs, faults can be inserted by controlling the processor via the
clock and control lines or by using embedded processor emulation capabilities. Some
new processors (i.e., TMS320C50, SuperSparc, etc.) are being introduced with built in
emulation features for processor control such as, RUN/STOP, SINGLE-STEP,
BREAKPOINT, REGISTER WRITE/READ, etc. While it is definitely easier to perform
fault emulation on a processor with embedded emulation, it may not be required.

Consider the design with a conventional processor in Figure 2.1.5-4. If the processor is
surrounded with scannable buffers and latches, processor control and data signals can be
controlled via the IEEE 1149.1 test bus. The processor can be halted by controlling the
WATT signal and single stepped by toggling the clock. Invalid states can be introduced
via the boundary scannable buffers and latches to change memory and I/O values, create
invalid control signal states, and generate invalid opcodes and data.

2-28

INPUTS

CLOCK

ea ■pill

< UJ U I

IS 5 Q 5
z
o
ea

(2)

(1,3,4)

STATE MACHINE

WITH ILLEGAL

STATE CHECKING

OUTPUTS

(S)
ERROR

JTAG/IEEE 1149.1

1) HALT STATE MACHINE CLOCK
2) SCAN AND DRIVE FAULTY STATE
3) CLOCK FAULTY STATE
4) RELEASE STATE MACHINE CLOCK
5) MONITOR ERROR SIGNAL

Figure 2.1.5-3. State Machine with Error Checking and Boundary Scannable Inputs

As an example, consider a processor based BIT executing a periodic I/O status test. In
this test, if an error condition occurs, appropriate status bits are set in the I/O register. A
fault can be introduced by performing the following steps:

1. Halt the processor by setting the WATT line.

2. Scan the I/O address and faulty data into the scannable devices.

3. Write the faulty data byte to the I/O register.

4. Release the WAIT line.

When the processor executes the I/O status test it will read the faulty status and execute
the appropriate error routine. Other faults can be inserted in this way including, RAM
errors, illegal instructions, erroneous data, invalid control signals, etc. This technique can
similarly be applied to applications software.

2-29

UP

(1)
X
Q

ADDRESS

MEMORY
DATA

(2)
CONTROL

IEEE 1149.1

1

CD

O c
z
o >
C/)

5
2

UP

GLUE

LOGIC

ASIC

(I/O DECODE,
INT, ETC.)

CO
O c
z
5

K > z

CD

O c
z
o >

5
z

I/O

ASIC

CD
O
c
z

1
5
z

4 •

2
1 1 1

1)-THEPROCESSORMAYBECONTROLLABLEVIASCAN EVEN IF
IT DOES NOT IMPLEMENT BOUNDARY SCAN

2) - KEY CONTROL SIGNALS INCLUDE: CLOCK, R/W, WAIT, ETC.

Figure 2.1.5-4. Processor Based Design to Support Fault Emulation via Boundary Scan

FAULT EMULATION RROTTIRFMENTS/I TMTTATTONS

Fault emulation is applicable to many designs. As systems become more integrated and
implement boundary scan, fault emulation will become much more valuable for system
test, debug and verification. However, there are several primary requirements in order to
apply this technique:

1. The circuit under test must have boundary (or internal) scan logic to control
the BIT hardware.

2. The circuit under test must have boundary (or internal) scan logic to control
the logic to be faulted.

3. The circuit logic must be capable of maintaining it's state with a static clock.

FAULT EMULATION CONTROL

Fault emulation should be accomplished by manipulating the hardware under test using
one controller function to manage the scan state and control the low level bit
manipulations. To accomplish this task, a scan-based control system should allow easy
and logical control of the boundary and internal scan paths. Experiments have been
performed using a TI developed scan-based hardware and software system known as
ASSET(tm). The tool maintains knowledge of the complete scan path and allows
scannable circuit signals and buses to be treated in an object oriented fashion. In this
way, signals such as a processor data bus can be referred to as "PROC_DATA_BUS"
rather than the test ICs which drive it (i.e., U12, U32). This provides a level of

2-30

abstraction so the hardware under test can be dealt with at a higher and more
understandable level.
Simple experiments have been performed which indicated that fault emulation is feasible.
Depending on the design for test capabilities of the system under test, various levels of
virtual fault insertion are possible. If the system contains internal scan, which is the case
on most new designs, internal IC faults can be injected. This allows fault insertion to be
performed at a much lower level than physical fault insertion or even fault simulation
using behavioral models.

2.2. Module.
The following paragraphs discuss module level test bus extensions. Module level test bus
extensions may enhance the functionality of the bus or enhance the test capabilities of the
system hardware. Some module level extensions may utilize or leverage IC test bus
resources.

2.2.1. Intermodule testing.
Intermodule (module-to-module) testing is obviously desirable either to verify I/O
interface logic and module interconnects or to isolate faults to replaceable units for repair
or replacement. As systems become more integrated and the rnilitary moves to two-level
maintenance, module fault isolation will become even more important. A test bus may be
used as a means to initiate intermodule tests, coordinate tests, or report test status. There
are several methods to implement intermodule testing, some of which include, functional
I/O tests, boundary scan tests, and custom I/O test logic. These methods are shown in
Figure 2.2.1-1.

MODULE

FUNOIöIIAL
l/OJCIRCUITRV III

AMftlCtJITVCftOUl»

MODULE

: fUNCnONAt
I/O CIRCUITRY

:immämm
AW8ICUITY CROUP

MODULE

FUNCTIONAL
i;E13STC)M:;TE$aiS6)E;

PP*8

liSi^ÄfflSMi

FUNCTIONAL
MESSAGE I/O TEST

BOUNDARY SCAN
I/O TEST

CUSTOM I/O
TEST

Figure 2.2.1-1. Module Interconnect Test Methods

Functional I/O tests have been and continue to be the most common form of interconnect
test. This involves some form of communication (i.e., write, read, etc.) between one
module as the bus master and one or more modules as bus slaves. Functional I/O tests,

2-31

such as simple memory writes and reads, are easily performed on industry standard
backplane buses such as the VME-Bus and custom memory mapped I/O backplane buses.
They are popular because the test algorithms are typically simple, they require no test
logic, and there are usually multiple destinations on the backplane to communicate with.

The largest disadvantage of functional I/O tests comes from the fact that much of the
functional logic must be working to successfully perform a test. If the interface to the
functional I/O circuitry is faulty or the functional I/O circuitry itself is faulty the test will
fail with fault isolation ambiguity. The fault isolation ambiguity group will depend on the
amount of circuitry between the tests source and destination. In many systems,
particularly older systems, this is a significant amount of circuitry. Therefore, the less
circuitry involved in the I/O test, the smaller the fault ambiguity group.

Boundary scan at the I/O interface offers the best method to detect and isolate faults on
modules external interfaces. This is due to the fact that the test patterns can be
independently driven from a device's pins without the need to propagate patterns through
functional circuitry. The boundary scan circuitry could be controlled via the IEEE 1149.1
test bus driven by a system level embedded test controller or an external controller.
Unfortunately, the 1149.1 test bus is not suitable as a module to module test bus because
it is a ring topology. As a solution, a module level test bus such as the TM-Bus could be
used to control the 1149.1 test bus during intermodule tests. The system level test
controller uses the TM-Bus to send commands to drive module outputs on one module
and capture module inputs. This operation can be performed via a TM-Bus-to-1149.1
gateway on the module or via the TM-Bus Module I/O Control and Test (MICT)
commands, if supported. Alternately, an autonomous test controlled, initiated by a TM-
Bus command could locally control the module boundary scan logic during intermodule
tests.

Custom intermodule test circuitry is another option which can be used to perform
module-to-module tests. This method is implemented by designing specific test circuitry
near the module interfaces to drive outputs and sample inputs during test mode. In some
cases portions of the functional I/O circuitry may be used during the test and therefore
may not offer as good fault isolation as boundary scan. Also, because this method is
interface specific, the design may not be reusable on different module types or other
systems. However, if implemented, the custom test circuitry could be controller via a
module level test bus to provide a generic means of test initiation, coordination, and
results retrieval.

2.2.2. TM-Bus with TSMD.

In many applications, it is useful to interface the functionality of a Time-Stress
Measurement Device (TSMD) with the Test and Maintenance Bus. This is done to
provide temporal environmental data along with performance and failure/maintenance
data. Collection of TSMD data supports correlation of real-time performance and failure
data with the associated environmental conditions. This is expected to be useful in
eliminating false alarms, cannot duplicates (CND's), and Re-Test OK's (RTOKs). It is
also expected to support the accelerated maturation of Test and Diagnostic systems.

2-32

Figure 2.2.2-1 shows an example of a fault occurrence which is being compared with
stress data for correlation evaluation.

5.5

TTLVOLTAGE 50

4.5

TEMPERATURE

VIBRATION

TIME

FAULT CODE F29

Figure 2.2.2-1. Fault Occurrence Correlation To Stress Data

Access to stress data can be accomplished via the TM bus in several different ways. One
of the easiest is to read the stress data directly via the TM bus User-defined Ports. A
separate port address may be used for access to each stress measurement sensor or each
sensor could be accessed indirectly as a subaddress of the port representing stress
measurement data in general, hi either of these two cases the primary limiting factor
would be the rate at which data can be transferred between the TM bus slave port and the
bus master and the rate at which data is being sampled. Using the latest JIAWG
specifications, the clock rate would be a minimum of 6.25 KHZ with data packets of 17
bits each (16 bits plus one parity bit). If data from sensors was being sampled at a 1 KHZ
rate, generating one word (16 bits) of data per sample, and assuming approximately 3
sensors per module, the total data for the module could be retrieved using this method.
This is possible if there are no more than two slave modules on the bus (assuming that the
bus could provide an effective transfer rate of 6KHZ allowing for protocol overhead).
This would also assume that there was no other information (BIT status, fault log data
etc) to be communicated via the TM bus. Obviously this method has serious limitations in
the general case of retrieving TSMD data.

Another way to deal with TSMD data is to have data processing capability local to the
module which incorporates stress measurement. This is expected to be a more common
implementation. The stress data would be processed locally, to determine exceedance of
maximum stress levels, to evaluate trends, and to perform other appropriate data
transformations. In an implementation of this type, the TM bus throughput impacts are
significantly reduced, depending primarily on the level of processing and intelligence
implemented at the TSMD. The general operation of TSMDs and some implementation
details are described below.

2-33

Time-Stress Measurement Devices typically measure parameters such as temperature,
vibration, acceleration, voltage, and time. The TSMD may also monitor digital test
signals (discretes). A TSMD may be a stand-alone device or may be combined with other
circuitry such as a digital interface and non-volatile memory for the fault log implemented
on a hybrid device. Most TSMDs provide sampling at a pre-determined or
programmable rate. They may include A/D conversion, and preprocessing of the
measured parameter(s). Some TSMDs provide D/A conversion and analog and digital
outputs which may be used as embedded test stimuli sources. In some applications, the
TSMD may also provide local control for the Test Bus interface. An intelligent TSMD
block diagram is shown in Figure 2.2.2-2. The figure shows sensors interfaced to a signal
conditioning' function following analog-to-digital conversion. The data processor also
interfaces with the on-chip non-volatile memory for BIT/stress data storage, a real-time
clock, and communications ports for module BIT operations/data and for external
(backplane/system-level) input/output of TSMD/BIT data.

TEST & MAINTENANCE

BUS (SUBSYSTEM)

INTERFACE

(USER PORT))

(BIT CONTROL)

XTALOR

EXTERNAL

TIME STAMP

MICROPROCESSOR

OR STATE MACHINE

CONTROLLER

(DATA PROCESSING)

ON-MODULE

INTERFACE

-I
A/D -I

-I

EEPROMOR

BATTERY-BACKED

RAM

(BIT + TEMPORAL DATA)

; Or+CHIPOR
OFF-CHIP

Figure 2.2.2-2. TSMD Architecture

Interfacing the TM bus with an intelligent TSMD may be accomplished in several ways.
The interface may be controlled by a state machine, or by an on-chip microprocessor.
Although the TM bus protocol can be handled by a state machine, in applications where
additional functionality such as IEEE 1149.1 control, BIT/BIST execution control, and
signal processing of TSMD data is required, the microprocessor may be an effective
trade-off. Decisions related to the selected interface implementation are typically based
on whether or not the module already has a microprocessor with available throughput to
support BIT and TSMD data processing, and the amount and complexity of data and

2-34

operations which must be controlled by the TSMD. In the instances where BIT for a TM
bus slave module consists of self-contained, autonomous actions which require minimal
control and processing, a state machine or similar control structure may be sufficient

In a typical subsystem, the TSMD/TM bus device might be implemented with both a
microprocessor-controlled TSMD/TM bus interface as the subsystem master, and a state
machine controlled TSMD/TM bus for subsequent 'slave' modules. This allows the
microprocessor-based TSMD/TM-bus controller to serve as the subsystem CPU for test
functions such as BIT and diagnostics control, TSMD data processing, and failure data
filtering and processing.

SUMMARY.
Interfacing the TM bus with Time-Stress Measurement Devices may be accomplished
through the user-defined ports with direct access to the stress data, or by accessing data
which is pre-processed locally. The implementation of the TM bus slave and the TSMD
may be accomplished in a single (hybrid) device or with multiple IC's.

The TM bus may be used to initiate or evaluate testing controlled or interfaced through
the TSMD, to collect test result data stored on the TSMD, or to retrieve stress
measurements from the TSMD.

Key trade-offs in interfacing TSMDs and the TM bus involve the evaluation of TM bus
and TSMD data processing requirements. The objective is to determine whether the
stress data can be accessed and transferred directly, whether a state machine can handle
the pre-processing operations required or if a local processor can provide the required
processing capacity for TSMD data, or whether an additional microprocessor is to be
added to support TSMD/TM bus/BIT requirements.

For systems where Cannot Duplicates, False Alarms and Retest OK's are important
considerations, TSMD's may prove very useful. Their use should be considered
whenever accurate diagnostics are critical to mission or safety. Interfacing with TSMDs
through the TM bus is straightforward, especially when dealing with an intelligent TSMD
implementation.

2.2.3. Extending IEEE 1149.1 in a Backplane Environment.

While 1149.1 was developed to serially access ICs on a board, it can be used at the
backplane level to serially access boards. 1149.1 has two serial access configurations,
referred to as "ring" and "star", that can be used at the backplane level. The following
describes both configurations and identifies problems with each when used at the
backplane level.

1149.1 Backplane Ring Configuration.

In a backplane 1149.1 ring configuration, all boards directly receive the TCK and TMS
control outputs from a test bus controller (TBC) and are daisy chained between the
TBC's TDO output and TDI input. During scan operation, the TBC outputs control on
TMS and TCK to scan data through all boards in the backplane, via its TDO and TDI bus
connections. The problem associated with the ring configuration, is that the scan
operation only works if all the boards are included in the backplane and are operable to

2-35

scan data from their TDI input to TOO output. If one of the boards is removed or has a
fault, the TBC will be unable to scan data through the backplane. Since the ring
configuration does not allow access to remaining boards when one is removed or
disabled, it does not fully meet the needs of a backplane serial bus.

1149.1 Backplane Star Configuration.

In a backplane 1149.1 star configuration, all boards directly receive the TCK and TDI
signals from the TBC and output a TDO signal to the TBC. Also each board receives a
unique TMS signal from the TBC. In the star configuration only one board is enabled at
a time to be serially accessed by the TBC. When a board is enabled, the TMS signal
associated with that board will be active while all other TMS signals are inactive. The
problem with the star configuration is that each board requires its own TMS signal. In a
backplane with 50 boards, the TBC would have to have 50 individually controllable TMS
signals, and the backplane would have to have traces for each of the 50 TMS signals.
Due to these requirements, star configurations are typically not considered for backplane
applications.

A NEW BACKPLANE ACCESS APPROACH

The new backplane access approach described in this section provides a method of using
the 1149.1 bus at the backplane level. Using this approach, it is envisioned that one
homogeneous serial bus may be used throughout a system design, rather than translating
between multiple serial bus types. Employing a common serial bus in system designs can
simplify software and hardware engineering efforts, since only an understanding of one
bus type is required.

A circuit, referred to as an addressable shadow port (ASP), and a protocol, referred to as
a shadow protocol, have been defined to provide a simple method of directly connecting
1149.1 backplane and board buses together. When the 1149.1 backplane bus is in either
its run test/idle (RT/TDLE) or TLRST state, the ASP can be enabled, via the shadow
protocol, to connect a target board's 1149.1 bus up to the backplane 1149.1 bus. After
the shadow protocol has been used to connect the target board and backplane buses
together, it is disabled and becomes transparent to the operation of the 1149.1 bus
protocol.

2-36

' IC1 IC2 ICN

TAP • TAP TAP
: ; r I

0

te 1
ASP BOARD ADDRESS
. .

PT
D

I

2
o

TBC

TOOTHER
BACKPLANE
BOARDS

TMS

TCK

TDI
SYSTEM BACKPLANE BUS

Figure 2.2.3-1. Board Using ASP Circuit

A board example using the ASP is shown in Figure 2.2.3-1. The board consists of
multiple ICs and an ASP. The ICs operate, when connected to the 1149.1 backplane bus,
via the ASP, as described in the 1149.1 standard. The ASP has a primary port for
connection to the backplane 1149.1 bus, a secondary port for connection to the board
1149.1 bus, and an address input. The primary port signals are labeled; PTDI, FIDO,
PTCK, and PTMS. The secondary port signals are labeled; STDI, STDO, STCK, and
STMS. The address input identifies the board on which the ASP is mounted.

In Figure 2.2.3-2, multiple boards, similar to the one in Figure 2.2.3-1, are shown
interfaced to a TBC via ASPs. When one of the boards needs to be accessed, the TBC
transmits a selection shadow protocol, referred to as a select protocol, to address and
enable the ASP of the selected board. The TBC transmits the select protocol when the
backplane 1149.1 bus is inactive and in a stable state, such as the RT/IDLE or TLRST
states. The select protocol contains an address that is used to match against the address
input to the ASP. All ASPs receive the select protocol, but only the one with the
matching address is selected.

2-37

FT
D

I

B0ARD1

D
t

B0ARD2

5
fc

BOARDN

ASP ASP ASP

u
fc t

«

1£ u

■

s
t

o St u
fc

 :

t

:

0
D
fc

TBC

TCK

TMS

TDI

SYSTEM BACKPIANE BUS

Figure 2.2.3-2. Backplane ASP Connections

Li response to the select protocol, the selected ASP transmits an acknowledgment
shadow protocol, referred to as an acknowledge protocol, to the TBC to verify reception
of the select protocol. The acknowledge protocol contains the address of the selected
ASP to allow the TBC to verify the correct ASP was selected. After transmitting the
acknowledge protocol, the selected ASP makes a connection between its primary and
secondary ports. In response to the acknowledge protocol, the TBC communicates to
the selected board using the 1149.1 bus protocol. If the TBC does not receive an
acknowledge protocol, it assumes the board has been removed or is disabled and will not
attempt to communicate to it using the 1149.1 protocol.

After the TBC completes its 1149.1 access of the currently selected board, it can output a
new select protocol to select another board's ASP. In response to the new select
protocol, the newly selected ASP transmits an acknowledge protocol back to the TBC,
then connects its primary and secondary ports. Also in response to the new select
protocol, the previously selected ASP breaks the connection between its primary and
secondary ports.

The disconnecting ASP remains in the state the backplane 1149.1 bus was in when the
disconnect occurs, i.e. the 1149.1 RT/EDLE or TLRST state. The ability to disconnect
and leave a board level 1149.1 bus in the RT/DDLE state is very important since it allows
leaving a board in a test mode while other boards are being selected and accessed.

A key objective of this backplane access approach was designing the select and
acknowledge protocols so that they could be transmitted on the 1149.1 bus without
infringing upon the 1149.1 bus protocol. This objective was met by specifying that the
select and acknowledge protocols could not use the 1149.1 TMS signal, and that the
protocols could only be transmitted while the 1149.1 bus is idle in its RT/IDLE state or
reset in its TLRST state.

2-38

To transmit the select and acknowledge protocols without using the TMS control signal,
a bit-pair signaling method was designed to allow control and data to be transmitted
together on a single wiring channel. During select protocols, the bit-pair signaling
method allows the TBC to transmit control and data from its TDO output to the ASP's
PTDI input. During acknowledge protocols, the bit-pair signaling method allows the
selected ASP to transmit control and data from its PTDO output to the TBCs TDI input
Both protocols include control to indicate: an idle condition, a start data transfer
condition, and a stop data transfer condition. In addition, both protocols include a
method of transmitting data during the interval between the start and stop data transfer
conditions.

The bit-pair signals are output from the transmitting device (TBC or ASP) on the falling
edge of the TCK and input to the receiving device (TBC or ASP) on the rising edge of
the TCK. Since this timing is consistent with 1149.1 timing, upgrading a TBC to support
this approach is simply a matter of forcing the TMS output to hold its present state ("0"
for RT/IDLE and "1" for TLRST) while using normal 1149.1 scan operations to transmit
and receive the select and acknowledge protocols. The simplicity of this approach makes
it an attractive addition to the 1149.1 test bus.

FRAMING OF SETECT/ACKNOWI,EDGE PROTOCOLS.

A diagram of the select and acknowledge protocols being transmitted while the 1149.1
bus is in its RT/EDLE state is shown in Figure 2.2.3-3. The T signals shown in the
protocol sequence indicate when the TDO to PTDI and PTDO to TDI wiring channels
are tristate and pulled high. The first sequence framed between the first and second I
signals is the select protocol output from the TBC to the ASP (TDO to PTDI). The
second sequence framed between the first and second I signals is the acknowledge
protocol output from the selected ASP to the TBC (PTDO to TDI). The select protocol
always precedes the acknowledge protocol as shown in the diagram.

TDO to PTDI T I S D.-.. D S I T T T...... T T T T

PTDO to TDI T T T T.._.. T T T I S D D S I T

1149.1 Bus is Idle -

Select Protocol Starts

Select Protocol Stops

Acknowledge Protocol Starts

Acknowledge Protocol Stops

1149.1 Bus can be activated

Figure 2.2.3-3. Select and Acknowledge Protocols

2-39

The I signal at the beginning of each protocol is designed to be indistinguishable from the
preceding T signals. This avoids unintentional entry into a select or acknowledge
protocol when the 1149.1 bus enters the RT/IDLE state after a scan operation.
However, the I signal at the end of each protocol is designed to be distinguishable from
the preceding S and D signals so that it can be used to terminate the protocol. Inside
each protocol, first and second S signals are used to frame the address which is defined
by a series of D signals. The logic zero and one D signals are distinguishable so that the
binary address can be recovered.

ASP CIRCIITT PFSCRTPTTOTV

A circuit example of the ASP is shown in Figure 2.2.3-4. The ASP consists of a receiver
circuit (RCR), a transmitter circuit (XMT), a slave control circuit, multiplexers (MX1
and MX2), a power up reset circuit (PRST), and a reset address (RSTA). The primary
port signals (PTDI, PTMS, PTCK, PTDO) connect to the backplane level 1149.1 bus.
The secondary port signals (STDO, STMS, STCK, STDI) connect to the board level
1149.1 bus. The address input bus receives the board address.

ASP Receiver Circuit

The receiver circuit consists of a controller and a serial input/parallel output (SIPO)
register. The receiver's controller determines when a first "I-S-D" signal sequence occurs
on PTDI, indicating the start of a select protocol and address input. In response to this
input sequence, the controller enables the SIPO to receive the serial address input on
PTDI. The controller determines when a first "D-S-I" signal sequence occurs on PTDI,
indicating the end of the address input and select protocol. In response to this input
sequence, the controller signals the slave control circuit, via the status bus, to read the
address on the address input bus (AI), then terminates the select protocol input operation.

STDO STMS STCK STDI

3SB MX2

RCR

Board .
Address

Control

Status

1 0

Control

SLAVE

CONTROL
CIRCUIT

Control

Status

AO
XMT

APO

MX1 *

3SB

PTDI PTMS PTCK PTDO

Figure 2.2.3-4. ASP Circuit Example

2-40

ASP Transmitter Circuit

The transmitter circuit consists of a controller and a parallel input/serial output (PISO)
register. At the beginning of an acknowledge protocol, the slave control circuit enables
MX1 and the 3-state buffer (3SB) to pass the acknowledge protocol output signal (APO)
from the transmitter to the PTDO output. The slave control circuit then inputs the board
address to the transmitter via the address output bus (AO). In response to the address
input, the transmitter outputs an I and S signal on PTDO to start the acknowledge
protocol, then transmits the address on PTDO. After the address is shifted out, the
transmitter circuit outputs an S and I signal sequence to stop the acknowledge protocol.

ASP Slave Control Circuit

The slave control circuit regulates the operation of the transmitter, receiver, and
multiplexers during select and acknowledge protocols. During select protocols, the slave
control circuit receives parallel address input from the receiver via the AI bus. The slave
control circuit compares the received address against the board address. If the addresses
match, the ASP responds by outputting an acknowledge protocol. During the
acknowledge protocol, the slave control circuit outputs control to the transmitter to load
the board address and initiate the acknowledge protocol. After the acknowledge
protocol has been transmitted, the slave control circuit outputs control to connect the
primary and secondary ports.

Resetting the ASP

When the ASP is reset, the slave control circuit, transmitter and receiver circuits are
initialized, and the primary and secondary ports are disconnected. The ASP is reset at
power up and the input of a select protocol with an address that matches the reset
address (RSTA) inside the ASP. If desired, a reset input pin could also be used to reset
the ASP. The RSTA is the same for all ASPs so that a global reset of all ASPs can be
achieved by the transmission of a single select protocol containing the reset address. The
reset address is unique from the board addresses and is defined to be address zero. An
acknowledge protocol is not transmitted after a reset address has been received, to avoid
contention on the PTDO outputs of multiple ASPs.

Connecting/Disconnecting ASPs

After access to a board is complete, a new select protocol is issued from the TBC to
select the another board's ASP. When the previously selected ASP receives the new
select protocol its primary and secondary ports are disconnected and the new ASPs
primary and secondary ports are connected. If the new select protocol was issued while
the backplane 1149.1 bus was in its RT/IDLE state (PTMS=0), MX2 of the
disconnecting ASP outputs a logic zero on STMS, to force the board level 1149.1 bus to
remain in the RT/DDLE state. If the new select protocol was issued while the backplane
1149.1 bus was in its TLRST state (PTMS=1), MX2 of the disconnecting ASP outputs a
logic one on STMS, to force the board level 1149.1 bus to remain in the TLRST state.
The ability to maintain the RT/IDLE state on a disconnected board is very important
because it allows tests to be setup and executed on more than one board at a time.

2-41

SUMMARY OF ASP ADVANTAGES

The following is a summary of the advantages the ASP approach offers over the other
1149.1 backplane to board access approaches mentioned in this discussion.

1. The ASP approach enables access to remaining backplane boards when one or
more are removed or disabled due to a fault. Thus the ASP overcomes the
problem related with 1149.1 ring configurations.

2. The ASP approach does not require use of additional TMS signals to access
individual boards. Thus the ASP overcomes the problem related with 1149.1
star configurations.

3. The ASP approach does not require use of sophisticated and bandwidth
reducing translation circuitry. Thus the ASP overcomes the problems stated
with using different backplane buses to access 1149.1 board environments.

2.3 System.

The results from this test bus evaluation study indicate that there is no need for any new
dedicated system level test bus. The current and proposed system buses, used in support
of testing applications, are sufficient for supporting the projected weight and throughput
requirements in military applications. A study, performed for the Aviation Applied
Technology Directorate (AATD), US ARMY Aviation Systems Command, supports this
conclusion.

The AATD study evaluated the weight, processing, and throughput requirements for
typical avionic subsystems and the capability of system buses to support these
requirements. The test bus evaluation study covered similar system buses identified
within the AATD study. Most important within the AATD study was system bus
throughput requirements. Table 2.3-1 list those system buses studied in the AATD study
and their associated throughput requirements. Each bus utilized a bus structure which
employed dual bus channels. Table 2.3-2 identifies system bus throughput expansion
capability associated with each bus channel. As indicated in Table 2.3-2, minimum usage
of each bus was required. The AATD study did not cover the IEEE 488 and IEEE
P1394 buses. However, the proposed IEEE P1394 bus is similar to the HSDB in data
rate requirements.

2-42

Table 2.3-1. System Bus Throughput Requirements

Subsystem Data Rate System Bus

Target Acquisition 1.95.36 KBPS 1553 Chns. 1 & 2

Flight Control 96.00 KBPS HSDB Chns. 1 & 2

Navigation 195.99 KBPS 1553 Chns. 1 & 2

Weapons & Fire Control 5.00 KBPS 1553 Chns. 1 & 2

A/C Survivability
Equipment

256.80 KBPS HSDB Chns. 1 & 2

16.00 KBPS 1553 Chns. 1 & 2

Airframe Management 1200.00 KBPS HSDB Chns. 1 & 2

23.20 KBPS 1553 Chns. 1 & 2

Table 2.3-2. System Bus Expansion Capability

System Bus Reserve Capability

HSDB Channel 1 98.5 %

HSDB Channel 2 98.7 %

1553 Channel 1 78.0 %

1553 Channel 2 79.0 %

2-43

3. TEST BUS CONTROL

3.1. Introduction.
Test bus control will naturally require some amount of hardware and/or software to
perform useful operations. Typical test bus control operations include, test initiation,
status monitoring, application and/or capture of test data, verification of faults, and
general data communications. Depending on the desired speed, intelligence, flexibility, or
programmability, many combinations of hardware and software controllers are possible.
The following paragraphs discuss control hardware and software for common test buses.

3.2. Test Bus Control Hardware.

3.2.1. IEEE 1149.1.
Controlling the 1149.1 test bus can range from extremely simple to very difficult
operations, depending on the UUT or desired functions. A simple controller can consist
of a parallel I/O port or state-machine driven by pre-ordered serial test patterns. A
simple controller of this sort requires some function (a simulator or computer) to
generate the serial instruction and data register bits in the order of the scan path before
data is applied to the UUT. More complex 1149.1 controllers have been implemented
which perform parallel to serial translation and TAP state management.

All 1149.1 control hardware options require memory to store test patterns. The test
pattern memory required for a given test can vary, depending on the control hardware,
based on pattern application methods, storage methods, and any data compression
employed. The data storage required for an 1149.1 test is:
TEST DATA MEMORY = ((STIMULUS) + (EXPECTED) + (MASK)) + COMMAND DATA) x # OF

PATTERNS

This can result in a significant amount of memory. For instance, ignoring command data,
a test consisting of 10000 patterns applied to a 64 bit scan path requires: 3x(10000x64)=
240,000 bytes. It is obvious that the number of test patterns should be minimized to keep
test data memory requirements as low as possible. As mentioned above, the hardware
used to control the IEEE 1149.1 test bus can also vary greatly, ranging from a simple
state-machine based controller to a programmable test controller driven by a processor.

On the low end, a simple state-machine based 1149.1 controller can be implemented in
hardware using control logic to apply and compare test data stored in a ROM. This
implementation is a simple bit-blaster which merely reads ROM data, drives the 1149.1
pins, and compares the expected data to the actual data gated with a compare/don't
compare mask. This simple state machine based 1149.1 test controller can be
implemented using a Field Programmable Gate Array (FPGA) and ROM to store test
patterns. Suitable FPGAs can be found in 28 pin packages, however a 44 pin package
may be required for sufficient ROM address and data signals.

3-1

Another method to implement 1149.1 test bus control would be via one of the
programmable off-the-shelf test bus controller ICs such as the AT&T 497AA boundary
scan master, National SCANPSC100 Boundary scan parallel/serial converter, or Texas
Instruments 74ACT8990 test bus controller. These devices are mounted in 28 to 44 pin
packages each and contain up to 6000 gates. These devices are usually driven by a
processor which executes a test program and sequences the test bus controller. A
programmable test bus controller would provide a great deal more flexibility than a
simple bit state machine-based controller. Programmable modes of operation can be
accommodated such as different execution modes, logging modes, and action to take
upon predefined or erroneous conditions. This implementation however does require a
processor (existing or dedicated) to execute the test program and additional memory (in
addition to test data) to store program code.

3.2.2. IEEE P1149.5 (TM-Bus).

The IEEE PI 149.5 (and other TM-Bus variants) requires a moderate amount of control
logic to implement master and/or slave functions. The TM-Bus logic can amount to 5x
to lOx more logic than required for 1149.1 control logic (only counting the TAP, bypass,
instruction register, and instruction decode logic). Of course, the TM-Bus logic is only
implemented, at most, once per module (as opposed to once per IC). The TM-Bus
protocol is also more structured to better suit message passing rather than large bit
streams of data. Previous TM-Bus interface ASICs have been implemented which
provide dual TM-Bus ports, programmable master/slave TM-Bus operations, a local
processor bus interface, a fault log interface, and an interface to an IC level test bus.
While all these capabilities are not needed for every application, they are typical of
JIAWG-type avionics. An ASIC with the features above requires about 10-12K gates
and requires 80-100 pins.

More austere TM-Bus interface implementations would naturally require fewer gates and
pins. Many applications only require a module which implements a TM-Bus master-only
or TM-Bus slave-only mode of operation. A TM-Bus master-only ASIC, with an
interface to a processor bus, would require only about 2000 gates. A TM-Bus slave-
only, with gateway to 1149.1 and a processor bus would only require about 4000 gates.
These simpler TM-Bus implementations would require as few as 44 pins per device.

3.2.3. MIL-STD-1553B.

MIL-STD-1553B implementations require a significant amount of logic and module area
to implement. In the past, several modules were required for the large number of
components in the design of the bus. Recently, the number of components has been
reduced via VLSI devices and surface mount packaging. Currently, a 1553B interface
can be implemented using off-the-shelf components (from companies such as United
Technologies or DDC) consisting of a bus controller/remote terminal (BC/RT) ASIC, a
transceiver, and a transformer. BC/RT ASICs typically require 84-100 pin packages and
the transceiver and transformer requires about an equivalent area.

3-2

3.3. Software Control.
Control software for test buses can vary greatly. Factors which determine the simplicity
or complexity of test bus control software include the bus complexity, bus topology,
system size and diversity, and of course the application.

System antf Mnrinle Buses.

First realize that module and system level test buses such as the TM-Bus (PI 149.5) and
MIL-STD-1553B are message based buses. These buses transmit data in message
packets to an address on the bus. The only unique information required for common
messages to multiple modules is the destination address. This makes software functions
fairly straightforward when common message types are used in systems. Also, these
buses allow a "broadcast" type message (i.e., run self-test, reset module, etc.) to be
transmitted to multiple modules which serves to further reduce bus traffic.

Control software required for the TM-Bus and 1553B bus is application specific. Some
systems employ "dumb" interfaces on the buses which simply communicate status or
configuration data without any software required. Older systems used this technique to
communicate limited data. Newer systems typically employ software which provides
some "added value" to the bus in the form of error handling or tolerance, detailed status
information, mode command and control, fault logging, etc. In these cases the actual
software required to control and communicate via the test bus is small compared to the
software used to process the data. Software to perform basic communications (such as a
bus master) over the TM-Bus or 1553B bus can be accomplished with less than 2,000
bytes of code.

TC Buses.
Control software for IC buses is extremely application specific. IC buses such as 1149.1
are simple serial data streams, not messages. One "message", which is actually a serial
scan, addressed to one IC is completely different if addressed to the same IC type at a
different location on the bus. This is due to the fact that the 1149.1 test bus ring
addresses ICs by placing the appropriate data at a specified location in the serial stream
during each scan. An enormous amount of data (and processing) can be required to
perform the bit mapping operations in real-time. Naturally as the size and complexity
(number of devices) of the UUT increases, the bit manipulation task becomes more
difficult
Non-deterministic control and generation of 1149.1 serial streams are usually performed
off-line by a simulator or in pseudo-real-time by a personal computer or workstation.
Pseudo-real-time interactive control and management of the 1149.1 scan path requires a
"model" of the UUT scan path on the controlling computer to perform such actions. The
scan software and the scan "model" can easily consume several hundred thousand bytes
of memory on a computer to perform these operations.

Application of deterministic tests can be performed by the simple 1149.1 control
hardware discussed above if the serial scan data is pre-formatted for the UUT.
Deterministic data can be captured from a simulator or a pseudo-real-time computer
generating the data streams and then embedded in a system to be used for start-up BIT.

3-3

Software required for control of 1149.1 deterministic tests can range from 20,000+ bytes
of code to implement a processor driven programmable test controller using an off-the-
shelf test bus controller, to 0 bytes for a simple "dumb" state-machine based test
controller.

3.4. Supporting Control Languages.

3.4.1. Boundary Scan Description Language (BSDL).

When 1149.1 began to see wide acceptance, it became obvious that a common method
was needed to describe 1149.1 devices in order to ensure consistent modeling and
compliance verification. Hewlett Packard first proposed the Boundary Scan Description
Language (BSDL) in 1990 as a way of describing 1149.1 compliant designs. BSDL
describes the implementation of 1149.1 in devices so that test logic synthesis and test
generation may be automated, as long as each implementation complies with the
standard. BSDL extends the use of IEEE 1149.1-1990 by providing a standard format,
using IEEE Std 1076-1987 VHDL (VHSIC [Very High Speed Integrated Circuit]
Hardware Description Language) syntax, to describe the unique application of the
boundary-scan standard within a device. With BSDL, ASIC designers and component
vendors can model their specific use of 1149.1 just one time for all purposes. Because
people will write BSDL, it must be human-readable. As input to automated tools it must
be unambiguously parsable by a computer.

BSDL is meant to describe only those IEEE 1149.1-1990 test elements which vary
between devices. Tools geared toward the 1149.1 standard can make use of this
language. These tools include testability analysis, test generation, failure diagnosis,
compliance monitoring and automated boundary scan synthesis. However, BSDL is not
a general purpose HDL (Hardware Description Language). Knowledge of the 1149.1
standard and a BSDL description must be combined to fully comprehend the workings of
the test logic. With an expanded VHDL created by boundary scan tools, simulation,
verification and synthesis functions can be performed. Support for these capabilities
exceeds the scope of BSDL.

BSDL complements the 1149.1 boundary scan standard. Elements mandated by the
standard, which never vary between devices, are not included in BSDL. For example,
characteristics of the bypass register and the TAP states are fully defined and constant.
Including these in BSDL would be redundant and introduce the chance for error.

Applications.

Because BSDL complies 100% with VHDL syntax, it may be included with the device
functional description throughout the entire VHDL environment The real power of
BSDL, and where it has the most impact, is to drive dedicated boundary scan tools. In
the boundary scan world, one BSDL file would be written for all uses. If the design
pinout or selection of 1149.1 bus instructions were to change, only the one BSDL
description would be updated. After users change the BSDL, support tools could
automatically regenerate the tests and logic and check for compliance with the 1149.1
standard.

3-4

If a project, wishing to use boundary scan tests, starts with BSDL, compliance to the
standard can be checked automatically. Some initial 1149.1 implementations were
incorrect and prevented using boundary scan test tools. A tool monitoring compliance
can uncover missing data, or erroneous data, such as including a TAP pin in the boundary
register. As always, the earlier a problem is detected, the better.

A natural next step is synthesis. With exception of highly specialized features related to
user-defined instructions, boundary scan logic is quite regular and its design is automated
readily. This is true even when the functional logic is not synthesized. When a project
does synthesize the core logic, typically they desire to automate the entire process and do
not wish to manually generate test logic outside their design flow.

Before or during synthesis, test generation can begin. Board tests can be created and
optimized long before ASIC fabrication. ASIC tests of boundary scan functions also can
be auto-generated. Functional and structural tests can be simplified by insertion of
internal scan. This is especially important when boards contain a mix of scan and non-
scan devices, because testability problems can occur due to lack of controllability or
observability. Make note that board test generation requires some description of the
board topology which BSDL does NOT address. Logically, this also should be
standardized. An effort to do so, called HSDL (Hierarchical Scan Description Language),
is underway. HSDL will be discussed as part of BSDL status.

Boundary Scan Characteristics.

What features of IEEE 1149.1-1990 must BSDL include? As stated, it only specifies
variable parameters of the basic elements.

Table 3.4.1 is intended as a representative sample of elements in BSDL, not a complete
listing. Basically, the language treats the core logic as a black box with terminal
connections to the test logic. BSDL's job is to define the test elements and their
connection with no knowledge of the device's internal functions. Further, BSDL does
not specify electrical parameters in any fashion. It covers only those factors concerning
the logical behavior of the boundary scan standard.

3-5

Table 3.4.1. Boundary Scan Characteristics and Their Correlation to BSDL.

Boundary Scan Element BSDL feature

TAP controller state diagram This is inherent to the standard, and is not in BSDL.

Bypass register This is fixed and may not vary. It is not in BSDL.

Addition of optional TRST* pin Status of TRST* pin incorporation is included.

Device-identification register BSDL indicates if this optional register is present
and specifies its capture value. However, its length
is fixed and is not in BSDL.

Physical location of TAP pins This variable is in BSDL.

Boundary Register BSDL defines its length, structure, capture data and
safe values for output control bits.

Instructions Register BSDL defines its length and capture value.

Instruction codes These variables are in BSDL.

Provision of SAMPLE/
PRELOAD, BYPASS and
EXTEST instructions

Fixed features of standard, not in BSDL.

Operation of recommended, but
optional, and user-defined
instructions

Although variable, such operation is beyond the
scope of BSDL.

User-defined data registers BSDL identifies user-defined data registers and
specifies their length and associated instructions.

Language Elements.

BSDL, like its VHDL-parent's syntax, is not case-sensitive and allows free-format
statements, spanning multiple lines and terminated with appropriate characters or
reserved words. Comments contain anything between a "--" symbol and the end-of-line.
Thus, for comments, end-of-line is the terminating character. Many boundary-scan
characteristics are expressed in VHDL quoted character strings. Each string is linked to
a VHDL attribute and must conform to the string's corresponding BSDL syntax. VHDL
ignores BSDL-specific syntax; only applications which read BSDL (compiled or not)
check for its requirements. BSDL tools fall in two categories. In one, BSDL information
is accessed from the compiled VHDL design "data base". By referencing boundary scan
attributes, VHDL-based tools can extract desired data. In a device design environment,
which includes synthesis and simulation, it would be most convenient to use this all-
VHDL flow. The second category, of course, falls in the non-VHDL environment
These programs parse the VHDL looking for BSDL syntax and ignoring all others. It

3-6

would be difficult and wasteful here to attempt to act on the full range of VHDL
constructs. That is why both the syntax and practices are constrained, making BSDL a
subset and standard practice of VHDL. (When many methods exist to model a function,
only one is permitted by the "standard practice".) As a result, the front-end (parser) of
every process is comparable and simplified, leaving more time to develop and run the
main process.

BSDL utilizes three structural units of VHDL; they are Entity, Package, and Package
Body. An entity houses device descriptions for VHDL. Part of that component
definition is the Boundary-Scan parameters added by BSDL. To prevent duplication of
effort, promote consistency and reduce errors, all 1149.1 definitions are provided by a
pre-written, standard VHDL package and package body. The package contents are tied
to the 1149.1 standard, and should be as constant as the standard itself. This source
should be protected from change, accidental or otherwise. Each release of a new
standard would necessitate the creation of a new package conforming to it.

An additional package and package body pair may be developed by the user to relay
design-specific information. Because of design constraints, added test functions, silicon
technology or other reasons, a user may create a library of unique cell definitions or
special test structures. By isolating this data in a separate package body, it may be
updated without recompiling all the entities which reference the package.

BSDL data contained in VHDL strings has unique syntax, separate from VHDL, and
requires its own rules. These rules are specified in simple Backus-Naur Form (BNF) or
for more obvious cases, only an example is used. Because the strings can contain many
pieces of information, they may become quite long. Therefore, the concatenation
operator, '&', is recommended to split the strings into lengths, which easily can be edited,
viewed, printed and saved in standard (<133 characters / line) text files.

Status.

BSDL has been proposed by Hewlett Packard (HP) as the standard description language
for boundary-scan devices complying with IEEE Standard 1149.1-1990. HP has been
working closely with industry to refine and distribute the standard even before submitting
it for review by the 1149.1 working group to be included in 1149.1b. Through a
combination of need in industry and promotion by HP, BSDL has become a defacto
standard, and is supported by many ATE, CAE and semiconductor vendors and
customers. The goal for BSDL is that, as new applications need more features, changes
will be minor and evolution will be upwardly compatible.

Hierarchical Scan Description Language (HSDL) is currently being proposed by Texas
Instruments. HSDL supports all aspects of BSDL, but adds features to describe the
interconnection of boundary scannable devices at the board, system or multi-chip module
levels and to support interactive debug at the device level. HSDL provides the ability to
describe boards, name subsets or supersets of test registers, create symbol tables for test
registers or files that use symbolic, named values, prevent illegal states from being
established, and so forth. HSDL includes features such as the ability to describe different
status values captured by a test register and designate them as "pass" or "fail" values. For
interactive use, HSDL allows adding descriptive text to each item in the entity.

3-7

HSDL is a strict superset of BSDL. All statements unique to HSDL device entities are
optional. Thus, BSDL is accepted by an HSDL translator, and HSDL models can be
trimmed down to pure BSDL easily. If HSDL is fed to the BSDL translator, the
translator will identify all non-BSDL statements. Those statements then can be deleted
without creating syntax errors and without losing or altering the meaning.

3.4.2. Serial Vector Format (SVF).

The Serial Vector Format (SVF) consists of test patterns described as ASCII commands
which represent the stimulus, expected response, and mask data for 1149.1 based tests.
The need for SVF arose from the desire to have vendor independent 1149.1 test patterns
which could be reused in a number of environments, spanning from design verification
through field diagnostics. Migrating test vectors from one test execution platform to
another, and applying them in multiple phases of test, is difficult or impossible because of
all the parsers, translators, and formatters required to process the various internal test
vector formats of tools. SVF will allow seamless transfer and use of IEEE 1149.1
vectors. SVF is vendor independent yet flexible enough to adapt to a wide range of
applications.

Transition Based Behavior.

The execution of tests via IEEE 1149.1 is controlled by the sequencing of TAP signals on
the pins of the devices. Each device's behavior is determined solely by the states of its
TAP pins. Boundary-scan tools must maintain knowledge of the sequences required to
exert certain behaviors within a device, and where that device is located down the serial
scan path.

SVF controls the 1149.1 test bus via commands which transition the TAP from one
steady state to another. Rather than describe the explicit state of the IEEE 1149.1 bus on
every TCK cycle, SVF describes it in terms of transactions conducted between stable
states. For instance, the process of scanning in an instruction is described merely in terms
of the data involved and the desired stable state to enter after the scan has been
conducted. The capture, update, pause, etc. states are inferred rather than explicitly
represented. The data to be scanned in, expected data out, and compare mask are all
grouped in an easily understandable manner. A command is provided to support
deterministic navigation of TAP states where required.

In addition to supporting higher level depictions of scan operations, Serial Vector Format
also supports combined serial and parallel operations. This will allow SVF to
accommodate ATE environments where some stimulus response is handled via parallel
VO, and serial signals are accessed via an IEEE 1149.1 control environment.

SVF also supports the concept of scan offsets. Offsets allow a test to be applied to a
component or cluster of logic embedded in the middle of a scan chain. In Figure 3.4.2, a
device exists in multiple instances on a board. Serially applied tests were generated by
the designer which are available in SVF format. To reutüize this test, it is necessary to
put all other devices on the scan chain into the bypass mode. The 1149.1 test controller
must therefore comprehend 24 instruction register bits before and behind the target

3-8

device. Likewise, once in bypass, the devices will introduce 3 data register bits before
and after the target device.
SVF allows a header and trailer to be defined once which maintains the instruction
register and data registers of the non-targeted devices in the desired bypass state. No
modifications are required to the SVF for the device. In Figure 3.4.2, if the same test
were targeted towards another device downstream, this would be accommodated merely
by changing the headers and trailers.

BOUNDARY SCAN

™ RECISTER (3S)

BYPASS
REOSTER(l)

INSTRUCTION

REGISTER (B)

BOUNDARY SCAN
REGISTER (35)

BYPASS
RECISTER(t)

INSTRUCTION

RECISTER(8]

BOUNDARY SCAN
REGISTER (35)

BYPASS

RECISTER(I)

INSTRUCTION

REGISTER (B)

BOUNDARY SCAN
REGISTER (35)

1-

TDO

BOUNDARY SCAN
REGISTER (35)

*-

TDt TDO

BOUNDARY SCAN

RECISTER (35)
«-

•- TDI
BYPASS

REGISTER (t)

BYPASS
RECISTER(I)

BYPASS
RECISTER (1) « rc*0

•- •- *■ INSTRUCTION

RECtSTER(a)

INSTRUCTION

REGISTER (B)

INSTRUCTION

RECISTER (B)

()-# BITS IN REGISTER

Figure 3.4.2. Scan Chain of Six ICs
i

The offset approach is capable of installing any instruction and maintaining the data
registers in a known state, provided these values are constant for the entire process of
applying the SVF device sequence.

SVF Formats. The SVF file is the media for exchanging descriptions of high level
1149.1 bus operations. Li general, 1149.1 bus operations consist of scan operations and
movements between different stable states on the 1149.1 state diagram. SVF does not
explicitly describe the state of the 1149.1 bus at every Test Clock.

The SVF file is defined as an ASCII file which consists of a set of SVF statements.
Statements are terminated by a semicolon (;) and may continue for more than one line.
The maximum number of ASCII characters per line is 256. SVF is not case sensitive, and
comments can be inserted into a SVF file after an exclamation point (!) or a pair of
slashes (//).
Each statement consists of a command and parameters associated with that specific
command. Commands can be grouped into three types; state commands, offset
commands, and parallel commands.

State Commands. State commands are used to specify how the test sequences will
traverse the JTAG state machine. The following state commands are supported:

3-9

SDR Scan data register
s x R Scan instruction register

ENDDR Define end state of DR scan

ENDIR Define end state of IR scan

RUNTEST Enter Run-Test/Tdle state

STATE Goto specified stable state

TRST Drive the TRST line to the designated level

SDR performs an IEEE 1149.1 data register scan. SIR performs an IEEE 1149.1
instruction register scan. ENDDR and ENDIR establish a default state for the bus
following any data register scan or instruction register scan, respectively. RUNTEST
invokes a Run-Test/Idle state for a specific number of TCKs. For each of the above
commands, a default path through the state machine is used. Each of these commands
also terminates in a stable non-scan state.

STATE places the bus in a designated IEEE 1149.1 stable state. A designated path
through the state machine can be specified to be followed. TRST activates or deactivates
the optional test reset signal of the IEEE 1149.1 bus.

Offset Commands. Offset commands allow a series of SVF commands to be targeted
towards a contiguous series of points in the scanpath. Examples would be a sequence for
executing seiftest on a device, or a cluster test where all devices involved in the cluster
test are grouped together. The following offset commands are supported:

HDR Header data for data bits
HIR Header data for instruction bits
TDR Trailer data for data bits
TIR Trailer data for instruction bits

HDR specifies a particular pattern of data bits to be padded into the front end of every
data scan. HIR specifies the same for the front of every instruction register scan.
Likewise, TDR and TIR specify data to be injected on the back end of each scan. These
patterns need only be specified once and are included on each scan, unless changed by a
subsequent HDR, HIR, TDR or TIR command.

Parallel Commands. Parallel commands are used to map and apply parallel commands.
PI° Specifies a parallel test pattern

PIOMAP Designates the mapping of bits in the PIO
command to logical pin names

Parallel commands allow SVF to combine serial and parallel sequences. PIOMAP
commands are used by parallel I/O controllers to map data bits in the command into

3-10

parallel 1/0 channels using the ASCII logical pin name as a reference. The PIO command
specifies the execution of a parallel pattern application / sample. SVF does not specify
any other properties of parallel I/O such as drive, levels, or skew. '

Default State Transitions. Table 3.4.2 identifies the default path taken when
transitioning from the current state to a specified new state. The defaults may be
overridden by specifying an explicit valid sequence using the STATE command.

Example.

An example of a SVF file is shown below.

!Begin Test Program
TRST OFF;
STATE RESET;
ENDIR IDLE;
ENDDR DRPAUSE;

HIR 24 TDI
HDR 3 TDI
TIR 16 TDI
TDR 2 TDI

(FFFFFF) ;
(7) TDO (7!
(FFFF);
(3);

MASK (0);

SIR 8 TDI (41);
SDR 32 TDI (ABCD1234) TDO (11112222)
RUNTEST 95 TCK ENDSTATE IRPAUSE;
SIR 8 TDI (00) TDO (21);

STATE RESET;
!End Test Program

Disable Test Reset line
initialized UUT
End IR scans in IDLE
End DR scans in DRPAUSE

24 bit IR header
3 bit DR header

16 bit IR trailer
2 bit DR trailer

8 bit IR scan
32 bit DR scan
RUNBIST for 95 TCK Clocks
8 bit IR scan and check
for status bit

Enter Test-Logic-Reset

The test begins by de-asserting TRST. The IDLE state is established as the default end
state for instruction scans, and DRPAUSE for data scans. Twenty four bits of header
and sixteen bits of trailer data are specified for instruction register scans. No status bits
are checked. Three bits of header data and two bits of trailer data are specified for data
register scans.

3-11

Table 3.4.2. Stable State Paths

Current
State

New
State State Path

RESET RESET RESET
RESET IDLE RESET-IDLE
RESET DRPAUSE RESET-IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE
RESET IRPAUSE RESET-IDLE-IRSELECT-IRCAPTURE-IREXIT1-IRPAUSE
IDLE RESET IDLE-DRSELECT-IRSELECT-RESET
IDLE IDLE IDLE
IDLE DRPAUSE IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE
IDLE IRPAUSE IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-

IRPAUSE
DRPAUSE RESET DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-

RESET
DRPAUSE IDLE DRPAUSE-DREXIT2-DRUPDATE-IDLE
DRPAUSE DRPAUSE DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-DRCAPTURE-

DREXIT1-DRPAUSE
DRPAUSE IRPAUSE DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-

IRCAPTURE-IREXIT1-IRPAUSE
IRPAUSE RESET IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-IRSELECT-

RESET
IRPAUSE IDLE IRPAUSE-IREXIT2-IRUPDATE-IDLE
IRPAUSE DRPAUSE IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-DRCAPTURE-

DREXIT1-DRPAUSE
IRPAUSE IRPAUSE IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-IRSELECT-

IRCAPTURE-IREXIT1-IRPAUSE

In the example above, a single device in the middle of the scan path is targeted. Notice
that the targeted device has 3 devices before it in the scan from the 24-bit IR header (3 x
8-bit IR) and the 3 bit DR header (3 x 1-bit DR). The targeted device also has 2 devices
after it in the scan path from the 16-bit IR header (2 x 8-bit IR) and the 2 bit DR header
(2 x 1-bit DR). After the header and trailer offsets are established all subsequent scans
are the concatenation of the HEADER, scan data, and TRAILER bits. The targeted
device supports Self Test which is initialized by scanning a hex 41 into the instruction
register, followed by a hex ABCD1234 into the selected data register. The targeted
device BIST is then executed by entering the Run-Test/Idle state for 95 clocks. Next, a
new instruction is scanned in and the status bits compared against a deterministic value to
determine pass/fail.

3-12

4. TEST BUS APPLICATIONS

4.1. Test Bus Architecture And Interfaces.

Test Bus architecture and interface designs must consider the use and types of buses
necessary for support of production, mission, depot, and maintenance applications. The
following subparagraphs describe efforts undertaken by industry and government
programs in support of this concern.

4.1.1. Avionics System Architecture.

Advanced avionic system platforms are pursuing the use of common buses, modules,
interfaces, and microprocessors to meet application, throughput, weight, reconfiguration,
fault tolerance, fault detection and isolation requirements of the next decade. Work has
been completed by the Joint Integrated Avionics Working Group (JIAWG) under the
direction of the Tri-Services to define requirements for a Common Avionics Baseline
(CAB). This baseline established requirements for common modules, buses, test
strategies, and the storage of fault data within module memory.

System common buses provide for standardization of bus interface connection, control,
data exchange, and bus testing. The JIAWG has identified several buses for use in
advanced avionics architectures. These buses include:

• MIL-STD-1553

• High Speed Data Bus

• High Bandwidth Interface

System Buses.

The MIL-STD-1553 data bus provides control and data communications between
processing resources and off-the-shelf equipment, and between avionic sensors and
subsystem elements. The MIL-STD-1553 data bus is a serial, command/response,
multiple terminal data bus capable of providing a data transfer rate of 1 million bits per
second. Redundant 1553 data buses are typically employed within system architectures
to provide for tolerance against battle damage.

The High Speed Data Bus provides a high speed message passing capability between
system elements. The High Speed Data Bus is a fiber optic, linear, token passing data
bus capable of a 50 million bits per second transfer rate. Redundant buses are also used
to provided for tolerance against battle damage.

The High Bandwidth Interface provides a high-speed fiber optic link for the
communication of data between enclosures within the system; enclosures being the
grouping of subsystems to form an integrated signal and data processing element.

Figure 4.1.1 illustrates an advanced avionics architecture which makes use of this system
bus concept.

4-1

DMA CSMU

1SS3

AIRCRAFT

SUBSYSTEMS
A/C

SENSORS

PROCESSING

ELEMENT

GROUP

1553 Bus

High Bandwidth
^ Interface w

PROCESSING

ELEMENT

GROUP

COCKPIT

DISPLAYS/

CONTROL

High Speed Data Bus - I
'2

HSDB

AIRCRAFT

SUBSYSTEMS

MECHANICAL

SENSORS
MM

4 1

DMA - DETACHABLE MAINTENANCE AID

CSMU - CRASH SURWABLE MEMORY UNIT

MM - MAINTENANCE MEMORY

Figure 4.1.1. An Advanced Avionics Architecture

System diagnostic applications utilize the HSDB and 1553 system buses to pass control
data to and receive status information from avionic subsystems. Control data passed to
subsystems can initiate subsystem internal built-in self-test diagnostic applications, thus
allowing a subsystem to determine its own operating status. Via the system buses, this
status can then be requested for transmission to system fault management applications for
subsystem status assessment, allowing for reconfiguration of system resources around
faulty subsystems. System failure information can be transferred, via the system buses, to
on-board maintenance memory to preserve environment parameters during the time the
failure occurred. The bandwidth of each system bus currently supports system
throughput requirements, and with enough reserves for system expansion.

4.1.2. System to Module.

Meeting system capability requires an architecture dominated by processor and digital
logic. The use of common modules and built-in test strategies are demanded. Common
module sets and data buses are being defined and developed to provide the processing
and throughput requirements needed to meet future mission needs. By mapping
subsystem applications on common modules and connecting these modules via common
module data buses to form processing groups, it has been found that logistics and
maintenance can be reduced, while at the same time, system fault tolerance and testing
capability can be increased. Needless-to-say, the use of common modules reduce the
types of modules required and thus reduces the number of modules needed to support
subsystem applications.

4-2

The JIAWG has defined several common module architectures which support future
system required capabilities. These common modules fall into seven categories: 1) 16
bit/32 bit common avionics processors, 2) user console interface, 3) power supplies, 4)
memories, 5) graphics and signal processors, 6) data network modules, and 7) data bus
interface modules. The JIAWG has also defined requirements for buses which interface
to common modules. These buses consist of:

• Parallel Intermodule (PI) bus

• Test and Maintenance (TM) bus

• Local Memory bus

• Signal Processing (SP) bus

The Avionics Commonality Working Group, an extension of the JIAWG, continued
previous work performed by the JIAWG on the TM bus by identifying extensions to the
bus. The Society of Automotive Engineers (SAE) has established a working group to
define electrical requirements for a Module Test and Maintenance (MTM) bus and
avionics extensions. Final TM bus requirements are expected to be formed from the
work of both of these working groups.

Module Buses.

The Parallel Intermodule bus provides a message and data communications path between
modules supporting a system subsystem application. It is a 16-bit parallel, redundant
backplane bus which operates at a 12.5-MHz clock rate. The PI bus provides a backup
capability to the Test and Maintenance (TM) bus for control and status information in the
event of TM bus failure. The number of modules supported by the PI bus is currently 32
modules.
The Test and Maintenance bus provides the primary test and maintenance path for
modules supporting a subsystem application. It is a serial, linear, master/slave protocol
bus for test and maintenance control, data, and status and operates in a multi-drop
environment. Clock rate is 6.25 MHz and redundant buses are generally used within a
system's architecture. The number of modules supported by the TM bus architecture is
currently 61 modules.

The Local Memory bus provides a memory expansion capability to a common avionics
processor when on-board processor memory is not capable of supporting subsystem
application requirements.

The Signal Processing bus provides for high-speed, data intensive, low-latency
transmission between signal processing modules supporting subsystem application
requirements.

Figure 4.1.2-1 illustrates the connectivity of these data buses within a subsystem
environment.

4-3

TM-BUS CHN B (configured as a local TM-Bus to the processing group)

LOCAL BUS
.

, i

;..

■ ,

' 1
SP-BUS

PI-BUS 32-Bit

Common

Processor

Signal

Processor

Signal

Processor

Memory

Expansion

TM-BUS CHN A

■

 » p.

^g^^&i|^Ä DATA DISTRIBUTION NETWORK MfMfmSmm^M

Figure 4.1.2-1. Subsystem Bus Architecture

Subsystem buses, like system buses, provide ä medium for transmission of control and
status information between modules, which make up a subsystem, and between
subsystems. Via the subsystem buses, individual module self-test applications can be
initiated and the resulting status from testing obtained for status assessment. Test results
can then be transferred to a module embedded fault log to preserve environment
parameters at the time the fault occurred.

Module Fault Top

The JIAWG has established the format and data content for common module embedded
fault logs. Extensions to this format and data content have been defined which provide
additional information to assist vehicle and maintenance decisions. Information contained
within an extended module fault log includes (*; extensions to the JIAWG):

• Name plate information

1.

2.

3.

4.

5.

part, serial number

configuration, stock number

accumulated runtime, power on/off cycles

slot, rack, bay, A/C ID, side

log fault pointer

*6. log rollover indicator, fault log count

Maintenance history information

1. repair count

2. first and second highest replaced part

Module fault information for each fault occurred

1. fault code, bit mode

2. year/monm/day/hour/minute of failure

4-4

3. temperature and environment data

*4. bus status information

*5. module operating states

*6. subsystem reporting failure and task executing at time of failure

*7. module mission capability

*8. detailed test parameters of test detecting the failure

*• Fault log checksum information

Figure 4.1.2-2 illustrates a module (LRM) architecture which uses the TM bus and PI bus
to transmit control data to and receive status information from module embedded built-in
testing applications. Note; through subsystem bus interfaces located on a module, IEEE
1149.1 test control and data can be issued to trigger embedded integrated circuit (IC)
testing logic and collect testing results.

PI-BUS/L0CALBUS-*-

TM-BUSA-

TM-BUS B <•

Reques^Report

TM-BUS
INTERFACE
FUNCTION

~1

LRM I
FAULT I
LOG '

Request
Report

Request!

Report

Control

CONTINUOUS
SELF-TEST (CST)

FUNCTION

CONVENTIONAL
BUILT-IN TEST

FUNCTION

Request/
Report

SCAN PATH TEST
CONTROLLER

SCAN PATH
INTERFACE

CONTINUOUS
MONITORING

FUNCTIONAL
TESTS

- BUILT-IN
-* SELF-TESTS

LRM
■ BOUNDARY SCAN

(IEEE 1149.1)

INTERNAL SCAN

(IEEE 1149.1)

[LRM 1
:AULT
LOG

—i FAULT I
I i r>r. i

Figure 4.1.2-2. Module Test Bus Architecture

4-5

Module Testing.

The types of module self-test applications which can be initiated via the subsystem buses
fall into the following categories:

• Start-up Built-in Test (SBIT)

• Periodic Built-in Test (PBIT)

• Initiated Built-in Test (IBIT)

• Continuous Self-Test Built-in Test (CBIT)

SBIT. Executes automatically upon power being applied to the module or upon module
reset. SBIT testing applications usually support module warm start and cold start
execution.

PBIT. Executes periodically at some scheduled frequency and is generally non-intrusive
in its execution. It is typically capable of being interruptible by higher system applications

EBrr. Executes upon being initiated by system applications. Test initiation is generally
performed over the TM bus, however, backup test initiation can be provided over the PI
bus, local bus, or SP bus.

CBIT. Executes continuously as long as power is applied to the module. It consists of
hardware monitoring functions and test software executing on the module during
processor idle time.

Fault Data Impacts on Module Buses.

The status information received over the subsystem buses from the execution of built-in
tests, provide information to subsystems and the system which allows them to perform
fault verification, fault filtering, fault correlation, reconfiguration, and prognostic
applications to assist in meeting mission objectives. The types of information needed by
these applications and received via subsystem buses include:

Module bus status (PI, TM, Local)

Module health (fully capable, mission capable, degraded, or inoperable)

Module BIT status and BIT mode being executed

Operating state of the module (on-line/off-line, enabled/disabled)

Module type (processor, memory, interface, etc.)

BIST register of module integrated circuits (if applicable)

The impact this information has on the design of bus architectures used at the subsystem
level has been studied and the conclusions are herein presented.

Advanced avionic platforms require a large number of common modules to support all
vehicle subsystems. Limitations in TM bus connections require a bus architecture which
is hierarchical in nature. This requirement is driven by bus master/slave protocol, the
transfer rate of the bus, the type of information required over the bus, and the frequency
at which the information is requested. The TM bus has been targeted as the primary test

4-6

bus by the JIAWG and test initiation and test status results are to be issued over the TM
bus. Current TM bus mastership arbitration and channel switching schemes (channels A
and B) impact bus architecture as the number of common modules on the bus increase.
The current number of modules which can be connected to the TM bus is 61, and there
can only be one master of the bus at a time. All other modules on the TM bus are slaves
to the bus master and must be polled for their status information. To support avionic
applications, such as reconfiguration, flight control decision making, etc., fault detection
and reporting must be received within time frames which allow flight-critical/safety
decisions to be made (generally 3 seconds). The JIAWG has specified the duration at
which periodic built-in testing (PBIT) will execute to be 1 second (in 5-ms durations).
This time period would allow system applications to react to faulty conditions. The
results from a performed study found that as the number of modules connected to the
TM bus increased, the longer it took to determine faulty modules connected to the bus
due to bus master/slave protocol. It was concluded from the study that a hierarchy of
TM buses, with a typical module polling sequence of 1-ms, would be necessary to
transmit the required status information (identified above) from modules to subsystems
and to system fault management applications to support flight-critical/safety operations in
systems which employ a large number of common modules connected to the TM bus.

4.1.3. Module to IC.
Integrated Circuit (IC) manufacturers embedding the IEEE 1149.1 test bus architecture
within their designs are providing subsystem and system applications with the capability
to support fault detection and fault isolation requirements commanded by current and
future system platforms. Work is currently under way by several IC manufacturers to
interface the IEEE PI 149.5 Test and Maintenance (TM) bus with the IEEE 1149.1 to
allow test control and data to be issued from module test applications to module ICs.
Via the IEEE 1149.1 test bus, IC BIST can be initiated and the results obtained to
determine IC performance measures. Figure 4.1.3 illustrates a design which uses
envisioned fault detection and fault isolation capabilities and the IEEE 1149.1 test bus
architecture to enhance IC testing. This design makes use of the following concepts:

• Each IC will contain device BIST

• The IEEE 1149.1 Instruction Set Architecture (ISA) will be supported

• Internal scan and boundary scan operations based on the IEEE 1149.1 test
bus architecture (with design enhancements) will be supported

. The ability to force BIST failures via the IEEE 1149.1 test bus will exist

• BIST performance will be placed in a BIST register which is accessible via the
IEEE 1149.1 test bus

4-7

TDI
—"I B'ST Register \

TCLK, TMS, TRST

3_
Test

Access
Port

(TAP)

>DRCTL

»IRCTL

BSR

ISR1

ISRn

Device
Built-in Self-Test

DRSEL DRMODE

_i 4
IREG Decode

IREG

-*TDO

BSR Boundary Scan Register
ISR Internal Scan Register

Figure 4.1.3. Integrated Circuit Test Bus Architecture

It is envisioned that each IC will be designed with hardware and software features which
support testing via the IEEE 1149.1 test bus in any test environment (factory, field,
depot) and at any level of equipment integration (system, subsystem, module). ICs
should support the standard IEEE 1149.1 test functions and extensions to the standard.
Standard test functions include a TAP for scan protocol interpretation, instruction and
data registers for control and execution of scan operations. Extensions to the standard
includes the ability to initiate BIST and collect the results in a BIST register, generate
random test patterns, and perform signature analysis applications.

4.2. Specific Application Examples.

The previous section introduced system test bus and interface architectures. Specific
applications employing these architectures are discussed in the following subsections and
include:

• F-16 Modular Mission Computer

• F-22 Vehicle Management System Test Bus Architecture

• F-22 Radar Array Power Supply

• Aladdin Test Bus Architecture

• Solid State Recorder (SSR)

4-8

4.2.1. F-16 Modular Mission Computer.

Hardware Description.
The F-16 Modular Mission Computer (MMC) is an integrated mission computer which
provides advanced computing for the F-16's avionics and weapon systems. The MMC
performs computing for weapons delivery, navigation, Head-Up Display, and helmet
mounted display. It replaces three computers in the current configuration at less weight
and provides additional computing power and space for future growth. A MMC consists
of a data processing, avionics display, aircraft specific I/O, and power supply modules.
MMC modules communicate on the backplane using a common set of backplane
interfaces. Processing modules communicate over a dual redundant Parallel Interface
Bus (Pi-Bus) and a dual redundant Test and Maintenance Bus (TM-Bus). Real-time
module debug capabilities are embedded in the processing modules and interface with the
Computer Development System via IEEE-488 bus. The MMC architecture is shown in
Figure 4.2.1-1.

Weapons
Muxes

Display Display
Discretes

Chassis

Power
Supply

Modules

■S^ ^7 Aircraft
\/ Power

Computer PowerOn
Development Discretes

System HUD Low
Voltage
Power

1553B
Bus

Modules

1553B

Figure 4.2.1-1. F-16 MMC Architecture

The MMC test architecture is hierarchical in nature starting from the system level down
below the IC level. At the system level, system and module health is collected and
processed for logging and reporting. At the system level, test commands and status
information is transmitted and received via the MBL-STD-1553B system buses. System
level command and status information is communicated on the 1553B bus via 1553B data
transfer messages.

4-9

Module health and status information is collected on each module and communicated via
the TM-Bus. Processor modules contain a TM-Bus interface function which
communicates module test information to the system TM-Bus master. The TM-Bus
interface can be configured to allow the module to communicate as a TM-Bus master or
TM-Bus slave on the MMC backplane. The TM-Bus interface can control and
communicate various information including, initiating module BIT, module test status,
module fault log information, and even functional data. The TM-Bus interface can also
serve as an interface to communicate with the module internal IEEE 1149.1 test bus.
Autonomous Built-in Test (BIT) operates in several modes including Start-up BIT
(SBIT), Periodic BIT (PBIT) including continuous hardware monitors, and Initiated BIT
(ffiIT). SBIT includes extensive hardware Built-in Self Test (BIST) capabilities for the
ASICs and module. All ASIC and module BIT information is collected, filtered and
logged in a hierarchical results table which is available for system interrogation. The
MMC test bus architecture is shown in Figure 4.2.1-2.

SYSTEM 1553B BUS

MMC

rE 1 -h
ob jk
^y n

|™*i il

MODULE 4'

1
pi-Buy
TM-BUS

BACKPIANE TM-BUS

Figure 4.2.1-2. F-16 MMC Test Bus Architecture

Each MMC module has a significant amount of embedded test logic. Each ASIC has a
superset of the IEEE 1149.1 test bus and boundary scan implemented along with internal
scan and BIST logic. The PI-Bus/TM-Bus Unit (PTU) ASIC consolidates many of the
module level test features and serves as both the external test interface via the TM-Bus
and the module BIST controller. The MMC modules are one of the first modules to
utilize the IEEE 1149.1 for module BIST. A module BIST controller function contained
in the PTU and 1149.1 test patterns are stored in a reserved portion of the fault log
memory. Each ASIC also implements BIST to verify internal core logic.

4-10

AU ASIC test resources are available via the IEEE 1149.1 test bus. This includes BIST,
internal scan, and boundary scan logic. Internal scan was implemented at key points to
provide controllability and observability of device registers, internal state logic, and
special logic embedded for software/hardware integration. The 1149.1 ICs are all
connected in one serial ring on the module and controlled by a 1149.1 master function in
the PTU ASIC. To support module design verification, troubleshooting, and
manufacturing tests on Automatic Test Equipment (ATE), the 1149.1 test bus can
alternatively be controlled by an external master. An external master present pin on the
PTU ASIC, enables a multiplexer to drive test data into the PTU (now acting as a slave
on the 1149.1 bus) and through the other 1149.1 devices. A Data Processor 32 (DP32)
module is shown in Figure 4.2.1-3.

1 DATA CACHE

Dual
Pi-Bus

^ XCVRS |]^*^

Dual
TM-Bus ■■

^ ►! XCVRS

EEPROM(128Kx8)

Sen Tnl
Patterns

Fault Log
Area

<+

Ext 1149.1 Master

PTU „

ilWIOTI

Internal

lullt
1149.1
Master

1149.1
TAP

Multiplexed

Addr/Data Bus
(Byte Parity)

r
L-J

IEEE
1149.1

~1
I

PCI-M

i BIST

Internal
Scan

1149 1
TAP

INSTRUCTION
CACHE

ÜHEI

—1

R3000
PROCESSOR

Discretes

IEEE-488

«—►

Ext Interrupts

PCI-A
iMi
Main I

I Memory:
Tester

Internal;
Scan !

114*11
TAP

_l

EDAC - Error Detection & Correction
BIT-Built-in Test
BIST -Built-in Self Test
TAP-Test Access Port
PTU - PI-Bus/TM-Bus Unit
PCI-A - Processor Control Interface - Arbiter
PCI-M - Processor Control Interface - Monitor

Q| -Test Logic Functions

[- Loop back

-J w MAIN MEMORY
(4Mx32) MUM

FFPROM L-5Ü-
(64KX32) HMMHI^

Figure 4.2.1-3. F-16 MMC DP32 Module Test Architecture

Summary.

As discussed above, a significant amount of MMC resources are dedicated for test. This
includes, BIST and IEEE 1149.1 circuitry in ASICs, module BIST and test logic, TM-
Bus interface logic, fault log memory, BIT code in startup ROM, test signals on the
backplane, and so on. All these resources are implemented to achieve the high levels of
module level fault detection and fault isolation required to support two level maintenance
and reduce life cycle costs.

The F-16 test bus architecture is a consistent hierarchy from IC to module to system.
Starting at IC level, 1149.1 is used between ICs on a module, the TM-Bus interconnects

4-11

modules on the backplane, and 1553B is used to communicate with other subsystems.
This architecture was developed by the equipment prime contractor to ensure consistent
test access to all levels. Specific test requirements were integrated and allocated down to
the system, module and IC levels. An important side effect of this approach is that all
module and IC types will have the same set of test features, no matter how experienced
the designer is in implementing testability. Consistent requirements and implementation
across module types serves to minimize special test equipment by providing a common
test interface both to on-aircraft and off-aircraft test environments. Savings are also
realized by reduced automatic test equipment costs and labor costs because UUTs are
more self testable.

4.2.2. F-22 Vehicle Management System Test Bus Architecture.

The Vehicle Management System (VMS) provides general purpose data processing and
I/O control for F-22 aircraft. The VMS subsystem consists of many different module
types from various vendors. Modules communicate on the VMS backplane via common
interfaces such as the Pi-Bus as well as aircraft specific communication buses and
discrete I/O signals. The VMS subsystem is unique from other Joint Integrated Avionics
Working Group (JIAWG) like architectures in that it does not use a dedicated backplane
test bus. Test information is communicated between modules using the PI-Bus, which
primarily functions as the functional communications bus. The system architecture is
shown in Figure 4.2.2-1.

OTHER
1 SUBSYSTEMS

COMMON
INTEGRATED
PROCESSOR

I
STORES

MANAGEMENT

I
OTHER

' SUBSYSTEMS '

<i i »** 1+
> i/o N

AIRCRAFT
-fc- SPECIFIC

I/O

Figure 4.2.2-1. F-22 Vehicle Management System Architecture

This discussion will concentrate on the Processor Interface Control and Communications
(PICC) module which is used in multiple locations in the F-22 avionics. The PICC
module is based on a MIL-STD-1750A processor and supporting chip set. External
module communications are implemented via a PI-Bus, 1553B bus, and an aircraft
specific serial I/O bus. Other external interfaces include digital and differential discrete
I/O signals. Each of the PICC ASICs implement the IEEE 1149.1 test bus which is
routed to the module connector.

4-12

The ASICs implement nearly all of the processing, I/O, and glue logic on the PICC
module. Boundary scan in these devices provides almost complete control and
observation of all the module internal nodes. In addition to the standard 1149.1 features,
the ASICs implement 1149.1 extensions to provide additional test and debug capabilities.
For example, all ASICs implement the 1149.1 INTEST instruction which allows the IC
core logic to be stimulated via boundary scan. Also, most ASICs have internal scan at
key points to support IC design verification and fault detection.

The most significant 1149.1 extension is the addition of on-chip emulation logic in the
1750A processor. Emulation logic is accessible via the 1149.1 test bus to control the
processor for software integration and hardware testing. Via the 1149.1 test bus, the
processor can be commanded to HALT, RUN, SINGLE-STEP, examine/modify
registers, and examine/modify memory. This capability is invaluable for test because the
processor is not required to execute software to perform these operations. Typical
processors must be capable of executing a debug monitor program (which itself is
software) to perform these operations. But executing software may be impossible if
common hardware faults such as a data bus stuck-at fault exists. Also important is the
fact that the emulation actions are transparent to the application program because a
debug monitor or memory is not required to control the 1750A processor.

ftummarv.
System level test information is communicated via 1553B buses between subsystems and
separate physical boundaries (boxes) as is typical of most systems. The box-to-box
1553B interfaces are usually redundant so information can always be communicated even
in the presence of faults. The decision to not require a module level test bus on the
backplane was a subsystem architectural decision made by the prime equipment system
engineers based on cost, weight, and power. It was decided that test information would
be communicated on the functional backplane bus (in this case the Pi-Bus). This
approach is acceptable for many systems, and in fact most older systems used functional
buses to communicate test information. However, there are several drawbacks to this
approach; 1) the test information must be accommodated in the bandwidth of the
functional bus (the test information is usually low bandwidth), 2) there is no dedicated
test bus to interrogate, log or report faults if the functional bus is inoperative, 3) some
module types utilize different functional buses and therefore there is no common bus to
communicate test information to/from all module types.

The PICC module contains extensive module test resources including BIST, BIT
software, and 1149.1. However, the 1149.1 test bus is only utilized for module
integration, factory, and depot test and therefore is not connected on the backplane.
There are several reasons why the 1149.1 test bus is not used in the VMS chassis:

1. There is no system-wide 1149.1 master to control the 1149.1 slave modules

2. The VMS system has additional slots for growth and therefore module slots
may be empty and result in an open test bus ring

3. The number of VMS modules on a backplane would make a single test bus
ring unwieldy and unpractical

4-13

The PICC module actually has two 1149.1 test bus rings. One contains only the 1750A
processor, the other contains the remaining 1149.1 ICs. This partitioning was chosen so
that the software integration test system need only control the 1750A processor on the
1149.1 test bus. Control of the other ICs on the 1149.1 test bus was not required for
software integration. The 1750A processor 1149.1 ring is routed to a top connector used
only for software integration and to the module functional connector. All other ICs are
on the second 1149.1 ring which is only routed to the functional connector. During
module factory and depot test the two 1149.1 rings on the functional connector are
connected in series to form one 1149.1 ring.

4.2.3. F-22 Radar Array Power Supply.

Application Architecture Description

The F-22 Radar Array Power Supply (APS) provides voltage regulation and EMI
filtering for the F-22 Radar system. The APS, shown in Figure 4.2.3, consists of two (2)
Input Filter modules, ten (10) Array Power Supply Modules, and an Array Power Supply
Control (APSC) module. The APS accepts and conditions +270 VDC Aircraft Power,
producing the various DC voltages required for the radar array and for APS internal
operation.

The F-22 employs a two-level maintenance concept and requires on-aircraft module level
fault isolation via Integrated On-Board Diagnostics (IOBD), with minimal manual
procedures and no external test equipment. The APS supports the F-22 IOBD by
providing Initiated as well as Periodic and Concurrent Built-in Test functions.

APS BIT consists of IC self-test (BIST), functional or module self-tests, and coordinated
Radar System functional testing. Control of the APS BIT tests is typically autonomous
during radar operation; but individual tests or blocks of related tests can be executed
under external control to support both radar system-level tests and dedicated fault
isolation testing on the ground.

Test Bus Implementation.

APS BIT operations are controlled locally by the APSC module. The APS
communicates with the rest of the radar system via two unidirectional RS-422 buses
(command and status). Primary APS-internal communications are implemented by a four
wire serial Test and Maintenance (TM Bus) bus utilizing a subset of the IEEE PI 149.5
serial protocol and instruction set. The primary, or "master" control of this TM bus
resides on the APSC module, with the slave units on each of the twelve additional
modules. Additional discrete wiring between the APSC and other modules of the APS
are for high priority status and control signals.

The APSC communicates with both the APS power supply modules and the Input Filter
Assembly (IFA) modules via the Test and Maintenance bus. Each module accepts BIT
commands and provides module status information on request via the TM bus. The inter-
module communications as shown in Figure 4.2.3 include discrete signals such as:

4-14

1. SAFETY SHUTDOWN (Radar to APSC)

2. 270 ENABLE #1,270 ENABLE #2 (APSC to IFA(s))

3. MODULE DISABLE (Drain & Bias) (APSC to Power Modules)

to provide dedicated (and fail-safe) data path control of the modules in case of loss of
RS-422A or TM bus serial communications.

In addition, signals to the APSC module include:

1. IFA FAULT #1, IFA FAULT #2 (IFA(s) to APSC)

2. Bias Bus and Drain Bus (sample) (APS Power Bus to APSC)

to provide critical status to the APSC in real-time for immediate reaction to potentially
catastrophic fault events, eliminating the latency associated with normal TM bus
communications. These signals are also used to assist in APS and Radar Array fault
isolation.

PRIME270VDC#1 '
PRIME270RTH#I ■

SAEETYCNDfl '

ARRAY POWER

SUPPLY INPUT

FILTER

ASSEMBLY

NUMBER 1

COMMAND ■
RS«J

STATUS

EXT SYNC CLOCK

APSC12VDC#1

FILTERED 370 VDC 1

MODULE DISABLE

TM.
BUS

ARRAY POWER
SUPPLY

CONTROLLER
(APSC) ASSEMBLY

MASTER CONTROL

TEMP. SENSOR

APSC12VDC#2

SAFETYCND» 2

PRIME 270 VDC #2

PRIME 270 RTH f 2

ARRAY POWER

SUPPLY INPUT

FILTER

ASSEMBLY

NUMBER 2

ARRAY POWER

SUPPLY HIGH

DENSITY

MODULES

TEMPERATURE

SENSOR

TEMPERATURE

SENSOR LRU

INTERLOCK

SENSOR(S)

FILTERED 270 VDC 2

ARRAY POWER

SUPPLY HIGH

DENSITY
MODULES

♦ DRAIN8USRTN

»•BIAS BUS

♦•BIAS BUS RTN

Figure 4.2.3. Array Power Supply Block Diagram

The APSC monitors itself and the associated modules of the APS via combinations of
active tests and passive monitoring of signal and hardware status. Most active tests,
providing known stimuli and conditions, are executed in dedicated BIT (Start-Up or
Initiated BIT). Periodic or Concurrent BIT is executed during APS operation, where

4-15

testing is primarily "passive monitoring", non-interfering with operational processes. On
request, the APSC communicates with each module via the TM bus, consolidates results,
and provides the results to the radar via the RS-422A Status Bus. At the radar (or
aircraft) level, the results are integrated with other radar and aircraft information to
determine the source of the fault.

Each APS module includes an on-module fault log. Upon aircraft or radar confirmation
of a detected fault, and isolated to an APS module, the APSC is instructed to store data
regarding the fault, configuration information, and any other pertinent data in the faulty
module's error/fault log. The APSC also autonomously records pertinent APS module
information in the fault logs. This is information which the radar or aircraft may not
require or need not normally see; e.g., over temperature events or total runtime per
module.

Less detailed information regarding the fault, usually reformatted as a function of radar
operation and modes, is also stored on the aircraft's Data Transfer Cartridge for later
retrieval and maintenance actions and/or analysis.

Summary.

The F-22 APS test-related communications are accomplished with a unidirectional RS-
422, a modified (subset) IEEE PI 149.5 TM bus, and discrete signals. The BIT and
diagnostic features of the APS support a two-level maintenance concept with minimal
manual operations and external test equipment at the Organizational level of maintenance.
On-module fault logging includes temporal data (time, configuration, temperature etc.) to
help reduce false alarms and Retest OK's and to support accelerated diagnostic
maturation.

Li the case of the F-22 APS, the Test and Maintenance bus is not a full implementation of
the IEEE PI 149.5 TM bus for several reasons. They include the fact that at the time of
APS design the standard was still in flux and had not yet been ratified. They also include
the fact that the APS operational and diagnostic needs did not require or justify the full
implementation of the proposed standard.

The implementation of a subset of the TM bus was accomplished as a cost saving trade-
off. It is more likely that the bus implemented would have complied with the IEEE
standard in it's entirety if the standard had been ratified prior to APS design. It is also
more likely that it would have been used if off-the shelf designs for implementing the
interface had been available.

Discrete signals were used to supplement the TM bus to avoid any latency associated
with structured bus communications protocol. These signals were used only for critical
signals and similar implementations can be anticipated in other systems with critical
latency requirements.

Standard buses (i.e. RS-422) are still being used for higher-level test communications.
This is a cost/space/weight/power saving measure and similar trade-offs should be
anticipated in other systems. The key concern in using such a bus should be the fault
tolerance (or lack of it) of the communications mechanism. When fault tolerance is

4-16

critical, the use of a dedicated test bus may be justified. This was not so in the case of the
F-22 Radar System Array Power Supply.

4.2.4. Aladdin Test Bus Architecture.

The Aladdin parallel processing computer is a very high speed and high density computer
for embedded military applications. The primary application of Aladdin is automatic
target recognition for intelligent weapons and avionics. It employs silicon-on-silicon
packaging, 3-dimensional memory packaging and 100 Mhz operation to achieve 500
MIPS scalar processing and 2 GFLOPS floating point processing performance in a 4.5
inch diameter cylinder which is less than 6 inches high. An Aladdin processing cluster
consists of five Basic Processing Modules (BPMs), each providing 100 MIPS/400
MFLOPS performance. BPMs consist of a R4000 RISC scalar processor, a Vector Co-
Processor (VCP) ASIC, two Processor Interface Chip (PIC) ASICs, six Crossbar
(XBAR) switch ASICs and one megabyte of SRAM. All devices on the BPMs are
mounted on a silicon substrate and interconnected via Tape Automated Bonding (TAB).

The scalable modular architecture is achieved by interconnecting the five BPMs over a
standard backplane interface. All Aladdin memory is addressable over this bus under a
unified address space. BPMs can be added or deleted to satisfy applications requiring
more or less throughput. High speed sensor specific ports are provided on each BPM to
satisfy very high data rate sensors. Each BPM contains one megabyte of high speed
static RAM organized into eight independent banks and connected to the processing
resources through a 6x8 crossbar switch. Up to six of the eight memory banks can be
accessed simultaneously through the crossbar switch. The processor interfaces to both
the crossbar switch and the BPM-to-BPM bus via the Processor Interface Chip (PIC)
ASIC. The PIC provides both block transfer and individual word transfers between the
RISC processor and memory, within or between BPMs. Vector processing is provided
via the Vector Co-Processor (VCP) connected directly to the crossbar switch. The VCP
has three memory ports, providing sufficient bandwidth to and from memory to support
the operation of two arithmetic-logic units, two multipliers, three address generators, and
other on-chip arithmetic resources. Two high speed I/O ports are also implemented so
that sensor data and processing results can be written to and read from memory
simultaneously with on-board processing. The BPM architecture is shown in Figure
4.2.4-1.
A superset of the IEEE 1149.1 test bus and boundary scan was implemented on each of
the ASICs to provide a common test access method for ASIC and BPM testing as well as
a method to access internal structures. Internal scan was implemented at key points to
provide controUabihty and observability of device registers, internal state logic, and
special logic embedded for software/hardware integration.

4-17

LOCAL MEMORY
MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

MEM
(SRAM)

SWITCHING NETWORK WITH CONFLICT RESOLUTION
(XBAR) (6)

SECONDARY
CACHE
(SRAM)

R4000 SCALAR
PROCESSOR

 (SP)

PROCESSOR
INTERFACE
CONTROL

(PIC)

VECTOR
COPROCESSOR

(VCP)

*1 HIGH
\ SPEED

*> I/O

BPMCLK*-
SPCLK«- BUFFER

-BPM CLOCK
-SP CLOCK

SCAN
PATH

LINKER
JTAC/IEEE 1149.1

-* ALADDIN SYSTEM BUS

Figure 4.2.4-1 Basic Processing Module Architecture

A significant portion of logic was dedicated specifically for design verification and
software test and integration. Table 4.2.4-1 summarizes the test logic used on a BPM.
Test logic was controlled via the IEEE 1149.1 test bus and included ASIC internal scan
and built-in emulation. Built-in emulation logic in the ASICs provided control of
processor execution such as RUN, STOP, SINGLE-STEP, EXAMINE/MODIFY
internal registers, and real-time non-intrusive breakpoints and execution trace. A special
integration test system was developed for software integration to implement a user
interface, debugger, and control the built-in emulation logic via IEEE 1149.1.

Table 4.2.4-1 Aladdin BPM Test Logic Summary

of Gates

of Test Gates

of 1149.1 Opcodes

of Scan Paths

of Bits in Boundary

Device Type

XBAR(6) VCP PIC(2) R4000

65,000 165,000 125,000 ?
16,500 14,000 16,000 ?

60 81 74 2
26 37 21 3

271 253 302 319

Module

Emulation logic was designed into the VCP, PIC, and XBAR ASICs to support
coordinated system wide debugging on and between BPMs. Memory breakpoints and
execution trace was implemented in the XBARs to monitor and capture memory

4-18

transactions. Internal scan was incorporated into the VCP to examine and modify
internal software accessible registers. The PIC ASIC implemented the BPM and system
level emulation consolidation logic as well as statistics counters for cache misses and
various bus transactions. These built-in emulation capabilities, particularly the VCP
internal scan, proved invaluable during design verification and troubleshooting.

The Aladdin test bus architecture consists of an IEEE 1149.1 test bus partitioned into
sub-rings for each BPM. This test bus architecture was chosen to allow efficient access
to a subset of the devices in the cluster and to provide fault tolerance of scan path faults
during manufacturing, integration, and test. Each BPM is connected to other BPMs to
form one test bus ring. A device called a Scan Path Linker was incorporated on each
BPM to partition the R4000, VCP, PICs, and XBARs into four sub-rings. These sub-
rings could be collapsed to reduce the overhead of scanning all devices on a BPM and
also provided a level of fault tolerance if a sub-ring or a device caused a sub-ring scan
path discontinuity. The Aladdin test bus architecture is shown in Figure 4.2.4-2.

TEST
DATA OUT

PRIMARY 1149.1 RING

Figure 4.2.4-2. Aladdin Test Bus Architecture.

Other Aladdin physical configurations are being designed to accommodate different
weapon systems. One is the SEM-E form factor commonly used in avionics applications.
SEM-E modules are approximately 5.9x6.7 inches and less that 0.6 inch thick. Because
avionics systems typically have many different module types plugged into a common
backplane, they must also share common interfaces. This includes both functional
interfaces and test interfaces. To accommodate the test requirements, a SEM-E Aladdin
module will have a module level test and maintenance bus (TM-Bus). The TM-Bus
provides a backplane-wide test interface between modules to communicate module status

4-19

and to provide a gateway to the on-module IEEE 1149.1 test bus. The SEM-E Aladdin
test bus architecture is shown in Figure 4.2.4-3.

SECONDARY IEEE 1149.1
RINGS

BASIC PROCESSOR MODULE

*JK
BASIC PROCESSOR MODULE

*irtir"ir"ir'
SCAN PATH

UNKER

£

*ir,tiiilii"ir'
SCAN PATH

LINKER

TM-BUS
INTERFACE

PRIMARY
IEEE 1149.1

RING

jSEM-E SIZE MODULE!!!!

TM-BUS

Figure 4.2.4-3. SEM-E Aladdin Test Bus Architecture.

Summary.

The Aladdin program was initially a concept exploration program to demonstrate the
feasibility of high performance parallel processing and high density packaging. There
were no specific test or test architecture requirements. Therefore all test requirements
were derived to meet concept demonstration goals. The result was a hierarchical 1149.1
test bus architecture which was scalable to the number of BPMs in a processing cluster.
The easiest way to interface with the unit under test was directly to the 1149.1 test bus,
as opposed to a TM-Bus or some other gateway to the 1149.1 test bus. Also, since
BPMs were simply plugged together to form a "stack", the 1149.1 test bus always
formed a complete ring.

The scan path partitioning using Scan Path Linker devices was useful during initial
hardware integration because checkout could continue even if ICs were missing or bad.
With the Scan Path Linker devices the 1149.1 sub-rings could be opened or closed in any
order to work around open sub-rings caused by bad or missing ICs. This was less of an
issue for manufacturing tests, but tests could be executed faster by using the Scan Path
Linkers to collapse the 1149.1 test bus so that only the devices under test were being
scanned.

4-20

4.2.5. Solid State Recorder (SSR).
The Solid State Recorder (SSR) program demonstrates the use of high density, low
power solid-state memory for avionics and space data recording applications. The SSR
program implemented a solid state memory system comprised of multiple 1.2 Gigabit
Memory Units (GMU). GMUs utilize Multi-Chip Module (MCM) technology to provide
1.2 gigabits of memory in 10 cubic inches while using only 1.4 watts of power. To
achieve this level of density, 3 dimensional packaging technology was used on the
memory to create 3-D memory stacks. Each GMU is comprised of 5 Memory Bank
Substrates (MBS) and 2 buffer substrates. The buffer substrates contain I/O buffers for
interfacing with other SSR circuitry. The memory bank substrates contain 2 Memory
Driver Unit (MDU) ASIC devices and 16 3-D memory stacks. The MDU ASICs provide
an interface between the main SSR system bus and the 3-D stack memory. A GMU is
shown in Figure 4.2.5-1.

Figure 4.2.5-1. GigaBit Memory Unit

Due to the lack of physical access, IEEE 1149.1 boundary scan was designed into the
MDU ASICs to provide pin I/O control to test the memory stacks. The SSR design used
boundary scan for design verification, integration and test, manufacturing defects test,
and troubleshooting. Scan-based tests consisted of scan path tests, interconnect tests,
and functional scan-based tests. The functional scan-based tests were similar to normal
functional tests except that they were driven at the I/O pins by boundary scan. This

4-21

technique "emulates" a functional operation (driven by functional logic). Traditional
Built-in Test software was used for field test which consisted primarily of microprocessor
driven RAM tests.

The test bus architecture of each MBS consists of a single IEEE 1149.1 test bus ring.
Each memory bank substrate test bus can be individually accessed via a test board. On
the test board are five TI 74ACT8999 Scan Path Selectors (SPS) which partition the
IEEE 1149.1 test bus into four sub-rings. Each SPS provides the capability to open or
close one of the four test bus sub-rings at a time. One SPS provides access to MBS1-
MBS4 of each GMU. Four SPSs are used to access GMU1-GMU4. A fifth SPS
accesses MBS5 of GMU1-GMU4. The five SPSs are chained together to form the
primary test bus ring. This architecture is shown in Figure 4.2.5-2.

SECONDARY
1149.1 RINGS

—► SCAN PATH
SELECTOR

1

SCAN PATH
SELECTOR

2

73

>
-V SCAN PATH

SELECTOR
3 £

JO

70
z n

SCAN PATH
SELECTOR

4

SCAN PATH
SELECTOR

5

X
(1)

(1)

(1)

(1)

-4-
(2)

B

EDI

X

LLI

mil

(1) - SPSx CONNECTS TO MDU1-4 OF CMUx
(2) - SPS5 CONNECTS TO MDU5 OF GMU1-4

Summary.
Figure 4.2.5-2. Scan Path Architecture

This peculiar scan path architecture was chosen to allow individual MBSs to be accessed
individually and independently. The SPSs provide the scan path partitioning so that IEEE
1149.1 based tests can be executed on individual MBSs. This provides a level of fault
tolerance during testing and assembly because testing can be performed on individual
MBSs while unpopulated or non-functional MBSs can be bypassed. The SSR program
was initially a concept exploration program and therefore was limited to lab environments

4-22

with access to external equipment. However, as the GMUs are integrated into other
systems, the IEEE 1149.1 test bus can be interfaced with an autonomous test controller
or a higher level bus such as the TM-Bus.

4-23

5. TEST BUS IMPACTS

5.1. IEEE 1149.1 (JTAG).

Because all test buses are implemented in IC silicon, ICs will naturally have mostly
negative impacts due to gate count, power, pins, etc. Virtually all negative impacts occur
during or resulting from the design phase of ICs, because the design time, gate count, pin
count, yield decrease and performance impact are greatest here. However, the negative
IC costs are decreasing as tools and technology advance. For boards or modules, the
cost of adding 4 or 5 pins is only unfavorable compared to adding no test pins; but no test
pins implies no testability. Beyond the design phase, test generation, test application,
system debug, hardware/software integration, troubleshooting and repair time show the
tremendous benefits of adding the test bus. Simple "piece cost" analysis should be
avoided when analyzing test inputs because module and system life cycle benefits are not
considered, which is where the greatest advantages are realized.

5.1.1. Design.
IC Pins/Package Size. IEEE 1149.1 absolutely requires the addition of 4 pins, TMS,
TCK, TDI and TDO. These 4 extra pins are of no consequence if they do not push a
design into a larger package. When the number of functional pins plus 4, or 5 with
TRST, is less than the number of pins on the planned package, the device simply will
have fewer, if any, pins designated as "no connects." However, if the test bus pushes a
design from a 24-pin to a 40-pin package or from a 160-pin to a 208-pin package, the pin
counts increase by factors of 67% and 30% respectively. The pinout penalty can be
viewed also as the percentage of package pins dedicated to the test bus, shown in Table
5.1.1-1. The values in the table assume only 4 test bus pins and do not include TRST.

Board Test Points/Connector Size. Ad-hoc testability methods typically require
bringing each test point directly to a connector. Adding 5 test pins in this way adds only
5 test points; whereas the IEEE 1149.1 bus adds at least as many test points as the
number of boundary scan cells on the board, plus access to any internal scan paths. For a
memory board test case, an ad-hoc testability approach required over 60 extra pins,
compared to the 4 pins for IEEE 1149.1.

IC Gate Count. The number of IC VO pins drives the number of gates in the boundary
scan logic. Because each functional pin must have a boundary cell, the majority of the
gates for implementing boundary scan are found in the boundary register. Naturally,
more pins means more test logic gates, and fewer pins need fewer test logic gates. Thus,
devices with high pin count and little core logic have a higher percentage of gates used
for test. Whereas, core-bound ICs (small number of pins relative to size of core) have a
smaller percentage of gates for test.

5-1

Table 5.1.1-1. 1149.1 IC Package/Pin Ratio

IC Package
Size

Percent of 1149.1 IC Pins
vs. Total IC Pins

24 pins 16.7 %

40 pins 10.0%

64 pins 6.3%

100 pins 4.0%

132 pins 3.0%

160 pins 2.5%

208 pins 1.9%

The number of gates for a near-minimum implementation can be predicted. The survey
section listed the required blocks as the TAP controller, the instruction register (IR), the
bypass register (BR) and the boundary register. From this information, a formula to
estimate number of gates can be derived:

Total IEEE 1149.1 Gate count =
(TAP) + [(IR) * (IR bit width)] + (BR) + [(# I/O pins) * (# gates/pin)]

Note: Remember to count only the number of functional I/O pins, not power, ground or
unused pins.

Given the test cell gate counts for the targeted library and the design variables, the
formula yields accurate results. Table 5.1.1-2 shows test cell gate counts for one ASIC
vendor's 1.0-micron libraries. Using the table data and the equation, Figure 5.1.1 plots
test overhead percentages for standard-cell designs.

5-2

Table 5.1.1-2. ASIC Cell Gate Count

IEEE 1149.1 Function Approximate Number of Gates

Test Access Port (TAP) -170 gates

Instruction Register ~20 gates/register bit

Bypass Register -8 gates

Unidirectional Boundary Cell
(Standard Cell - Hard Macro)

~15 gates/pin

Bidirectional Boundary Cell
(Standard Cell)

~19 gates/pin

Unidirectional Boundary Cell
(Gate Array - Soft Macro)

~24 gates/pin

Note: Actual counts will vary between different ASIC libraries.

50%

45%

40%

35%

D
35

30%
X
OL 25%
> o 20%
I-; < u 15%
r-

% 10%
*—
& 5%

0%

% 1149.1 LOGIC vs. FUNCTIONAL LOCIC

20 35

ASIC FUNCTIONAL SIZES (K GATES)

#- 20 PINS

/5j-80 PINS

■- 40 PINS

Q- 100 PINS

jt" 60 PINS

Q- 120 PINS

Figure 5.1.1. Standard Cell ASIC 1149.1 Overhead

Table 5.1.1-3 shows gate counts for 3 manufactured ASICs. The first ASIC
demonstrates a high test logic percentage expected for an I/O bound device. The first

5-3

ASICs library lacks a hard macro, thus requiring the use of a soft macro. (Hard macros
are ASIC cells that are "pre-routed" or laid out and optimized for their collective
function.) Before declaring 52% too costly, consider two factors. First, this device
interfaces a processor to memory. In this location, the boundary scan partitions the
processor from memory, enabling separate tests. Second, gate arrays are fixed size, in
this case 6K gates, so the IEEE 1149.1 blocks used empty real estate. The second and
third examples show progressively more core-bound devices with correspondingly lower
test overhead. Their ratio of test logic drops also by use of hard macros available in this
standard cell library. Notice that these test overheads are low in spite of adding BIST to
allow the devices to self-test internal functions.

Table 5.1.1-3. Overhead Examples of Implementing IEEE 1149.1 and BIST

ASIC Size
(gates)

IC
Funct

Total I/O
Pins/

Bidirects

1149.1
prediction!

1149.1
actual

BIST Test
Total

Test
as %

of
total

4,7532 2,263 70/64 2,470 2,490 0 2,490 52.4
20,0003^4 18,350 70/16 1,648 1,650 1,000 2,650 13.3

87,0004 84,262 70/32 1,712 1,634 1,104 2,738 3.1

Notes:
1. Predicted values are based on the formula, 8 IR bits and data from Table 5.1.1-2.
For these devices, the size of the TAP, which has since been optimized, was ~183
gates.
2. Implemented in gate array. Assume ~28 gates/bidirectional pin for prediction.
3. Implemented in standard cell.
4. All gate counts for this ASIC are estimated.

Board Real Estate. The story of board real estate is similar to that for test points and
power. While individual IC footprints may grow, the number of devices specifically
added for test shrinks. Adding ICs for test, in an ad-hoc fashion, generally does not
improve testability as well as adding boundary scan either. Also, routing the bus signals
between components can take less space than adding toggle pins or routing many test
points from internal nodes directly to edge connectors.

In a memory board test case (mentioned under board test points), ad-hoc test methods
replaced 4 components and added 7 more components, while boundary scan test replaced
5 components and added 1 more component. Thus, the ad-hoc approach required 6

5-4

more devices to be added for test than did boundary scan. In spite of the higher part
count, the ad-hoc board had worse fault isolation. The largest ambiguity group for the
ad-hoc board was 4 devices, while for the scannable board it was only 2.

Unlike the example above, some systems require more advanced testability features, such
as an embedded test bus controller or a monitor device. Obviously, adding components
increases area. However, these additions will tend to be small in part count and will be
made only when testability requirements demand them. The test functions they provide
would be hard, if not impossible, to duplicate with ad-hoc test methods.

Power. Power dissipation varies according to technology and gate count. CMOS
technology draws more power as the amount of active logic or clock frequency increases.
In normal operating mode, the only active test logic is the output mux in boundary cells
which provide controllability. As a result, the test circuitry is mostly inactive or static
and, thus, consumes little power. However, in bipolar or GaA technology the power
increase is proportional to the additional gates. Board power is proportional to the sum
of all IC power consumption. While, boundary scannable devices can consume more
power, fewer devices are needed for testability, possibly lowering the total.

Power data is available for the TI SCOPE octals. To replace non-test octal parts, the test
octals must retain high drive without increasing power dissipation. Consequently, TI
designed them in BiCMOS technology, combining low-power CMOS in the core logic
and high-drive bipolar output buffers. The power consumption of the BCT8244 test
octal was compared to that of the BCT244, the FCT244A and the F244, from 0 to 33
MHz. For all frequencies, the BCT8244 used less power than either the FCT244A or the
F244. For frequency greater than 4 MHz, the BCT8244 test octal dissipates less power
than the BCT244.

Cycle time. Cycle time for the design phase starts at conception and continues until
release for manufacturing. The primary tasks are specification, design and verification.
Because the IEEE 1149.1 test architecture is so structured and well defined, writing a
specification for test is much easier than for ad-hoc testability. Board test is largely
covered by EXTEST. The number of test pins is known in advance, before manually
identifying test points for control and observation. IC test can be accomplished through
INTEST, RUNBIST and/or internal scan functions. Manually adding partial internal scan
to achieve a high fault grade can be a time-consuming process. Fortunately, identifying
nodes for partial internal scan is becoming automated. The same IC test features
specified for chip test can be reused for "pins-in" test, when the device is mounted on a
board or module.

The impact to IC design time can be anything from 5 weeks to under an hour. The case
which took 5 weeks included time for the designer to learn IEEE 1149.1, specify the
implementation, manually design the gate level logic and verify the test design. In that
environment, time to specify, design and verify dropped to 3 weeks without the learning
curve. When the process is automated, the engineer's time is limited to creating a pin list
or writing a BSDL file. Even when a test synthesis program providing automation runs
slowly, the labor to execute it is minimal. Depending on its complexity and the amount

5-5

of CPU time dedicated to it, the program could run for hours, but it only takes minutes
for the engineer to setup and initiate it.

During board level design, implementing testability for non-scan components will need
the most work, because test logic for boundary-scan is concentrated in the IC design
effort. When fewer 1149.1 devices are on a board, interconnect testing is harder.
However, simply replacing 8-bit buffers, registers or transceivers, common to many
boards, with test octal counterparts, helps by partitioning the logic into more testable
blocks.

Any special test features or circumstances alter the impacts of the test bus on board
design. Some examples are autonomous testing, long scan chains and at-speed testin p.

Autonomous Testing. If a board or system is to use scan during autonomous testing, it
must control the test bus internally. To do so requires an embedded controller. As
indicated in the board real estate section, one device can fill this function. Depending
upon whether the system has a microprocessor or not, influences the type of controller.
Most off-the-shelf 1149.1 controllers require a host processor for direction. If no host
processor is available, the controller must run independently. Because such a controller-
processor combination is not a commercial product, it must be designed, thus lengthening
cycle time. However, supporting autonomous testing without the test bus could be far
more difficult.

Long Scan Chains. In very dense boards or systems having exceedingly long scan chains
(such as multichip module projects), a scan path linker chip may be used to break the ring
into several smaller more manageable rings. Understanding and applying a linker device
can take time.

At-gpeed Testing. Some systems require on-line, concurrent, non-intrusive, at-speed
lesting. This can be done using IEEE 1149.1, but, again, impacts the design schedule.
See the real-time event qualification test bus extension and notice the monitor chips in the
appendix.

Even though digital simulators are getting faster, gate and pattern counts are
skyrocketing. One potential benefit of the test bus during IC design verification is
derived if some internal scan is used. Through internal scan, the designer can set up
initial conditions to test a block of logic, and possibly bypass a long test sequence
through another block. Besides saving time by shortening the test, the engineer avoids
problems caused by the other block being incomplete or not functioning. On the flip side
of Mtialization, expected results on internal nodes can be brought out through TDO,
simplifying verification of block functionality. Internal scan in effect partitions the chip
into smaller blocks which can be tested independently. Additionally, the resulting test
could run on a tester without modification.

Today, boards or systems are verified often after the first hardware prototype is ready,
rather than by simulations. Developers, then, must prove correct manufacturing, similarly
to rnanufacturing test, before functional verification or debug can begin. Two steps
accomplish the task. First, the scan chain integrity is tested with a flush test. If it fails,
test bus signals may be manually probed. Compared to troubleshooting the entire board,

5-6

the test bus has limited interconnections, is controlled easily and makes expected value
prediction (even of intermediate values) quite straightforward. Once the scan chain is
verified, the EXTEST instruction can verify much of the board's functional connections
and part placements. Now that the board is structurally correct, does it work? By
partitioning the functions and adding many virtual test points, both through boundary
scan and any IC internal scan, the test bus speeds up functional test generation and
debug. As for ICs, functional blocks on a board can be tested independently, when
separated from surrounding logic through scan. Divide-and-conquer significantly
shortens test creation. Partitioning enables verifying remaining areas of the board or
system, when a known-bad block exists. For a description of this example, see the
Aladdin application section. When functional tests fail, locating the fault is much simpler.
Virtual probing can be done without multiple logic analyzers, without manually moving
probes from place to place and without saving data from reruns of the same test to get a
complete picture. In systems with processors, hardware and software must be integrated.
The embedded design debugger extension speeds up integration by enabling all the
features associated with a processor emulator. The Aladdin project also successfully
used this extension. A section under Test Bus Extensions fully explains the debugger
features.

Propagation delay. Propagation delay, a.k.a. path delay, is the time it takes for a change
on a logic block input to propagate through a block path to an output. (A block is a
black box which may contain one transistor or an entire system.) Delays added to any
path in the circuit's functional logic block are of greater concern than the speed of the test
logic. In a minimum application of IEEE 1149.1-1990, test affects normal data paths
only of signals driving the level or strength of output pins. During EXTEST, the test bus
controls these signals through the 2-to-l output mux of attached boundary cells.
However, during normal operation, functional signals also pass through these muxes.
Then, the delay through the 2-to-l mux must be niinirnized. Propagation delays for cells
in current ASIC 1.0 micron CMOS standard cell libraries are ~0.8ns for a hard macro,
~1.8ns for a soft macro and ~200-400ns for a custom cell. Custom cells can be created
by building the 2-1 mux into all I/O buffers of the ASIC library. The buffer and mux
design prevents bypassing the mux, so that timing is the same with or without test. If the
first and only load on an input is a flip-flop data input (often a retiming flip-flop used for
synchronization), the input can be controlled without a mux, adding no. delay to the
functional circuit.

5.1.2. Manufacturing and Test (Fault Detection & Isolation).

IC purchase costs. Boundary-scan ICs, both ASIC and off-the-shelf, cost more to build
and purchase than equivalent components without test. Naturally, extra gates and pins
are not free. For ASICs the impact will be greater if either the extra pins force the device
into a larger package or the extra gates or I/O pads require a larger die. Even when the
same package and die sizes are used, more pins must be bonded and more gates must be
created. Data for one type of commercially available boundary-scan device, the TI
SCOPE octals, puts the cost at roughly 3 times their non-test counterparts. Because of
expanded test instructions and the simplistic nature of the normal function, the overhead
for test is high and drives up the price.

5-7

Board production costs. The cost of building a board prior to testing results from
materials and labor, both of which go up with complexity. The cost delta between ad-hoc
and boundary-scan test varies from board to board, ranging from cost savings to a higher
expense. As shown, ICs without the test bus are cheaper to buy. However, reducing the
number of test parts can offset this differential to such a degree, that the price actually
goes down. Also, decreasing the number of pins in the test port might mean smaller or
fewer connectors, less routing on the board and definitely fewer connector pins to wire.
Regardless if the board costs more, the expected savings come during test and
maintenance.

Yield. Implementing IEEE 1149.1 affects yield at all levels, IC, board and system.
During IC production, yield is measured for each of 3 major steps, sort yield (good
die/wafer), assembly yield (good packaging) and final test yield (burn-in testing). Sort
yield will drop as gate count increases and assembly yield drops as pin count increases.
Bum-in testing is perhaps most affected by how the device timing changes over
temperature. Therefore, the slight performance degradation caused by the test control
mux may lower final test yield. For board level manufacturing, yield may actually
increase as compared to ad-hoc test, if part and pin counts decrease. Thus, the same
elements that drive production costs also influence yield. System yield follows board
yield proportionally.

Automatic Test Equipment (ATE) issues. For a unit under test (UUT) with D3EE
1149.1 boundary-scan, the test equipment can be as simple as a PC with special software
and a hardware interface to the test bus. PC-based testers are inexpensive and portable.
While they can be used during design verification and in the factory, the portability and
simple connector make them ideal for field maintenance. Not only are they portable by
their size, but they are also portable among different types of UUTs, simply by using a
different test program. Because these testers only interface with the test bus, no special
fixture is needed for the UUT.

PC-based testers are not restricted to standalone operation. They can be combined with
traditional in-circuit or functional ATE. When the 2 testers are combined, the application
of serial and parallel patterns must be synchronized. This can be done either by
handshaking or a higher level controller to start one and stop the other at appropriate
times.

If the PC-based tester is not combined with the ATE, the ATE must handle serial pattern
application. Such testers typically apply vectors in parallel fashion, as described in the
SVF extension section. Parallel access of the serial bus is inefficient, and, so, tester
companies, such as Tektronix and Teradyne, are developing special approaches for serial
tests.

In systems with wafer scale integration (WSI) or multichip modules (MCMs), in-circuit
test (ICT) is uncommon, but circuit densities require testability. Even when circuit nodes
are accessible to ICT, eliminating ICT through boundary scan may provide savings. In-
circuit testers can range up to $350,000 with fixtures from $3,000 to $12,000 each.
Building the fixtures, which often can be done only after a board is debugged, consumes
up 3 to 6 weeks of time-to-market.

5-8

Test Generation. IEEE 1149.1 shines here. All those virtual test points, which are
simple to control and observe, cut test generation time to shreds, while achieving higher
fault detection and better isolation than ad-hoc testing. Test engineers can expect
detection of all types of faults, opens, shorts to power or ground and adjacent pin shorts,
both on output and on input pins. Detecting faults on input pins, even with in-circuit test
(ICT), was difficult, because the fault had to be propagated through the device to be
observed on an output pin. Boundary-scan puts a virtual test point right at the pin. In
the past, detecting a fault was hard enough, but writing a test to locate the source of the
fault to a few components was even tougher. Boundary-scan, however, can often
identify not only the faulty component, but even its failing pin.

One reason board test generation is so much easier and faster is that the core function of
scannable devices can be ignored. In fact, board tests can be created before the ASICs
are completed. IEEE 1149.1 can also simplify testing the internal logic of ICs, which are
mounted on a board. The test bus enables testing ICs either by reapplying the IC
manufacturing tests through INTEST or by executing a RUNBIST instruction. The
board test engineer does not need detailed knowledge of the component for either of
these test approaches.

Although the boundary scan standard was driven especially by circuits, such as wafer
scale integration (WSI), multichip modules (MCM), fine pitch packages, conformally
coated boards, surface mount (SMT), etc., which cannot use ICT, boundary scan is also a
great boon to ICT. ICT depends on component models to drive output pins and to
observe values through input pins. The more complex the device, the longer it takes to
write and debug the model. Also, as mentioned, detection of faults on input pins, using
these component functional models, is poor. When devices incorporate the 1149.1
standard, writing models and tests for ICT are simple and rarely, if ever, need to be
debugged.

Test Application. It would seem that applying tests serially would be slow. However,
the shortness of the tests, enabled by ready access to the virtual test points, more than
offsets time to shift vectors in and out. Also, time-consuming manual probing to locate
faults is bypassed. If the board cannot be probed, the smaller ambiguity groups save time
and money, because fewer parts are scrapped and the technician can repair the board
faster.

5.1.3. Field Support and Maintenance.

Test Generation and Test Size.

Field tests can be reused from factory tests, and will be especially convenient if the
factory tests run on a portable PC-based tester. If built-in test (BIT) and built-in self-test
(BIST) are relied on in the field, special considerations should be made. Boards and
systems usually have limited memory for storing BIT patterns and limited time to execute
BIT. Therefore, direct application of IC manufacturing vectors through INTEST may
not be acceptable. An optimum subset of those vectors can be identified to be used for
BIT. BIST circuitry or BIT code can be used to generate patterns and compress data. If
EXTEST patterns are 'precompiled* rather than interpreted, their execution time can be
reduced an order of magnitude.

5-9

Reliability.

The IEEE 1149.1 test architecture is required to not affect the normal functionality of the
core logic. This requirement reduces the rehability impact of the scan-based logic to only
the 2-to-l multiplexer in the functional data path. This 2-to-l multiplexer accounts for 2
gates per boundary cell. In a 6000-gate ASIC, with 132 functional pins, the 2-to-l
multiplexer would result in a 4.4 percent gate count increase in the functional data path.
This increase, however small, must be weighed against the overall increase in structured
testability at the system, board, and device levels. Table 5.1.3-1 compares the features,
including reliability, of a standard octal part with a testability octal part. Failure rates
listed in the table for the testability parts include all logic, not only the functional gates
and the 2-to-l mux added to the functional path.

Table 5.1.3-1. Feature Comparison for Standard Octal and Testability Octal Parts

Features Standard Octal
Parts

Testability Octal Parts

Pin count 20 24

Gate count <100 -800

Failure rate:
at 0 deg C
at 60 deg C

0.0401
0.1500

0.0563
0.2762

Normal
functions

Buffer, latch,
transceiver,
register

Buffer, latch, transceiver,
register

Internal test
functions for
testing of
other parts

None Signature analysis, Pseudo
random pattern generation,
Boundary scan,
Readback and latch (245),
1/0 toggle mode

External test
purposes

Readback latch,
Control register

Readback latch,
Control register,
Pattern generator

While the reliability of an individual IC may decrease, reliability at the board level may
improve. As discussed, structured testability, with IEEE 1149.1 boundary-scan, may add
fewer parts for test than ad-hoc testability, and thus offset the negative impact on IC
reliability. Even if the reliability drops, availability may increase. Consider a system with
200-hour MTBF and a repair time of 10 hours. Its availability is (1 - 10/200) or 95

5-10

percent. A more testable system with a 195-hour MTBF and repair time of 5 hours will
be available (1 - 5/195) or 97.5 percent of the time.

Table 5.1.3-2 compares reliability among 3 versions of a board, baseline, ad-hoc test and
1149.1 test. Failure rates for tables 5.1.3-1 and 5.1.3-2 were calculated according to
MIL-HDBK-217E. Mission failure was determined by recalculating and summing the
device failure rates at 60 degrees C for only the mission critical logic. Test logic which
does not affect functionality is not mission critical. Mean Time Between Failure (MTBF)
is derived from the mission failure rate. This example shows the possibility of part count
decreasing from ad-hoc to boundary-scan testability. The higher part count of the ad-hoc
board causes increased failures at 0 degree C, where the dominant failure mode is from
interconnects. Whereas, the 1149.1 solution edged over the failure rate of the ad-hoc
board at 60 degrees C, because at higher temperatures silicon process dominates the
failure modes. (Note that the connector was counted as a changed part: Actually, the
same connector was selected for all 3 boards, but, over 60 extra pins were used for the
ad-hoc board and 4 extra pins were used for the 1149.1 board.)

Table 5.1.3-2. Reliability Comparisons.

Reliability
Comparison

Baseline Board Ad-Hoc Board IEEE 1149.1
Board

Failure rate
at 0.0 deg C
at60.0degC

3.4135
36.8410

3.7105
37.8677

3.5670
37.8744

Mission failure
(FM)f/mh

20.1273 20.7891 20.7207

MTBF hours 49,700 48,100 48,300

Part count
(changed / added)

18 25(4/7) 19 (7/1)

Maintainability.

The overall impact of IEEE 1149.1 in the maintenance environment is as follows:

• enables more compact/portable flight line test equipment

• provides better isolation of failures to boards and individual devices

• provides for continuity of test vectors/test software between factory, field,
and depot

5-11

• shortens troubleshooting and repair times as a result of improved isolation
with its reduced ambiguity and "hands-off' virtual probing

• increases availability as maintenance time decreases

All of these features reduce maintainability expenses over the life of a design.

5.1.4. Cost Summary.

Costs can be compared in three ways, no testability, ad hoc test and use of IEEE 1149.1-
1990. Ad-hoc costs are not easily quantified, as they can vary widely, but their general
drawbacks and benefits can be contrasted with the test bus, as in Table 5.1.4.

Table 5.1.4. Differences between Traditional (Ad-hoc) and Boundary-Scan Methods

Tradeoffs Traditional Boundary-Scan

Approaches Usually not structured

Usually starts after design has
gone to manufacturing

Structured approach

Starts during design

Test
Equipment

Complexity/density of designs
require more test equipment to
test and debug systems

All "Hands On"

Hot mockup, logic analyzer,
oscilloscope,...

Limited equipment needed to test
and debug systems. No need for
expensive special test equipment
during production test, depot test,
etc...

"Hands On" limited

PC-AT software, ohmmeter, test
octals

Software Tests generally not reusable Reusable test software goes from
debug~board~production...

Internal
Visibility

Fault isolation depends on ad-
hoc testability

Manual probing required

Required external hardware to
look at internal nodes

Fault isolation increased

No manual probing required

Have internal node visibility

Real Estate Additional real estate required
to support ad-hoc testability and
space to allow for probing

Additional real estate, four I/O
pins, and a larger footprint IC

5-12

5.2. IEEEP1149.5/TM-BUS.

5.2.1. Design Considerations.
In the design of a module compliant to IEEE PI 149.5, there are several considerations
that must be addressed. As with any system design, the system-level considerations are
addressed first as a part of the system requirements definition process. Some system-
unique requirements will impact the IEEE PI 149.5 requirements for a module fitting m
the system The goal is for system-specific profiles to be available to both commercial
off-the-shelf equipment and military equipment vendors. The IEEE PI 149.5 system's
engineering considerations include:

1) MTM-Bus Physical Layer

• Electrical characteristics

• Timing parameters

Factors involved include the number of modules in the system, the system's
backplane characteristics (e.g., length, impedance, capacitance, termination), the
MCLK source, hot insertion/removal, etc.

2) Fault Tolerance
• Redundant/Backup Modules (Bus mastership arbitration/transfer)

• Multiple-Bus Architectures (Redundant buses, alternate buses, bus switching,
etc.)

There are also several module considerations in the development process. Many of these
considerations are influenced by the anticipated target system:

1) Interface type (master-only, slave-only, master/slave).

2) Slave module addressing method.

3) Support/need for Module Pause Request (MPR) signal.

4) Fault tolerance (packet count, MPR timer, application specific bus errors, etc.).

5) Error handling (for incorrect packet count, port transfer error, parity error).

6) Accessibility to module resources (i.e., data transfer ports).

7) Register(s) definitions (Module status register & other status registers).

8) Module unique functions (user-defined commands and message formats).

9) Level of support for:

• Module Interconnect Control and Test commands,

• Module initialization and Self-Test commands,

.• .Data Transfer commands.

5-13

5.2.2. Fault Detection/Isolation.

The IEEE PI 149.5 MTM-Bus provides no real fault detection or isolation for a module.
The bus provides a standard interface to module test resources for control and observing
status. It supports fault reporting through its standard status registers and the MTM-Bus
interrupt capability.

The MTM-Bus does provide fault detection/isolation support for module-to-module
interconnects, much like IEEE 1149.1 does for IC-to-IC interconnects, through the
recommended Module Interconnect Control and Test commands. These commands
ensure that each module input and output can be controlled and observed via the MTM-
Bus such that a static module-to-module interconnect test can be performed.

The MTM-Bus does provide significant fault detection for the bus physical, link and
message layers. The detectable faults include:

1) Single-bit packet errors (detectable via parity).

2) Bus signal stuck-at faults. This is provided for MMD, MCTL, and MSD signals
through collision detection, packet parity, detection of illegal commands, and
state sequence errors.

• MMD or MSD signal Stuck-At 1 => Illegal command, Bus collision

• MMD or MSD signal Stuck-At 0 => Parity Error, Bus collision

• MCTL signal Stuck-At 0 => State Sequence Error, Bus collision

• MCTL signal Stuck-At 1 => State Sequence Error, Bus collision

3) Message length errors (supported via packet count).

4) Bus protocol errors (detectable via state sequence error for MCTL and MMD;
detectable via data overrun error for MPR).

5) Command sequence errors for critical module control commands.

6) Message content integrity can be verified through:

• Detection of Illegal Port Selected (e.g., attempted to access a port that did not
exist or there was a potential module addressing problem)

• Detection of Illegal commands (e.g., attempted execution of reserved
opcodes).

MTM-Bus testing and (maximum module fault isolation) is supported through the Data
Echo command. The Data Echo command provides a packet-level wraparound feature at
the slave module's interface. This capability allows the bus to be fully exercised while
relying on a minimum amount of the module's interface logic.

5.2.3. Cost Summary.

There are both hardware and software costs associated with an IEEE PI 149.5 module
interface.

5-14

The hardware cost, of course, depends upon the requirements/options selected through
the design considerations mentioned earlier, and the implementation of those
requirements/options. The cost of a PI 149.5 slave interface is typically more than that
for a master due to the design complexity and the fact that more hardware/software
trade-offs can be performed for the master design. Assuming an Application Specific
Integrated Circuit (ASIC) implementation for a majority of the module's PI 149.5 slave
interface (Physical layer, Link layer, and a large portion of the Message layer), the cost in
terms of 2-input NAND gate equivalents may range from:

3000 gates for a slave meeting the minimum PI 149.5 requirements, up to

18000 gates for a complex slave with additional fault tolerance (dual bus
architecture, mastership arbitration, module direct memory access, etc.).

There are significantly more tradeoffs that can be made for a master implementation due
to the minimal master requirements imposed by PI 149.5. Assuming an ASIC
implementation of only the Physical layer and Link layer, the cost in terms of 2-input
NAND gate equivalents may range from:

2000 gates for a master with a simple CPU interface, up to

15.000 gates for a complex master with additional fault tolerance (dual bus
architecture, mastership arbitration, MPR timer, module direct memory access,
etc.).

The software cost for a PI 149.5 MTM-Bus implementation is primarily related to the
Message Layer. This software cost may vary greatly depending on the
hardware/software trade-offs selected during implementation. Again, the software
impacts are greater for a slave module than a master module, assuming that only the
Message Layer is implemented in software. For a master module, the Message Layer is
primarily message/packet construction, memory block moves to transfer/receive packets
from the Link Layer, and message error handling. The Message Layer for a slave module
depends heavily on the functions implemented for that module (e.g., accessible resources,
user-defined functions/commands, etc.). A slave's Message Layer might consist of
command recognition, message/packet construction in response to an MTM-Bus
command, interface to the on-module application(s)/resources, etc.

5.3. System Buses.
System buses evaluated during this study were found to impose iranimum impact on
system design architectures except for the considerations generally performed during
system engineering. These considerations include:

• System requirements associated with testing strategy; design verification,
factory, field, depot, and maintenance

• Fault detection, fault isolation, and throughput requirements; system,
subsystem, module

• Diagnostic data requirements; type and volume of data, and requester

• Hierarchical test initiation and status retrieval by higher test buses

5-15

• System partitioning requirements; analog/digital, subsystem/module/integrated
circuit

• System penalties associated with interfacing to system buses; added logic,
weight, topology, interface modules, etc.

From these system considerations, the value of a dedicated system bus for testing can be
determined.

5-16

6. TEST BUS EVALUATION RECOMMENDATIONS

The following recommendations are being made to the DOD as a result of the
studies performed during the Test Bus Evaluation. These recommendations reflect key
areas of concern for the successful implementation of test buses in DoD designs. They
are described in two forms, first, as test bus design criteria, and second, as management
issues. The design criteria recommendations will address those items critical to a
successful test bus system requirements allocation and design implementation. The
management section will address those items that are dependent on policies and
directives, or impacted by further R&D funding.

6.1. Test Bus Design Criteria Recommendations.
1. Mil-Std 1814 (Integrated Diagnostics Roadmap and Requirements Document) should
be updated to require a test bus architecture trade-off analysis, at the system through
module level, as part of the Integrated Diagnostics requirements allocation and
derivation, and a vertical testability traceability analysis, during which, the use of standard
test buses will be evaluated for use in multiple testing environments (e.g. BIT, design
verification, factory test, depot test, etc.).

Establishing the requirements for a test bus architecture is the first step in assuring
standard test buses are designed into weapon systems. This starts at the Concept/
Exploration contract phase and carries through the Engineering and Manufacturing
Development. Mil-Std 1814 and the Air Force Guide Specification 87256 go into great
detail on defining the total spectrum of the diagnostic process and requirements. These
documents need to be updated to include the following changes;

• MS 1814, requirement for a Test Bus Architecture Trade-off Analysis
. MS 1814, requirement for a Vertical Testability Traceability Program
• MS 1814 Appendix A, test bus detailed requirements and verification
. MS 1814 Appendix G, impact of vertical test compatibility from test buses
. AFGS 87256, update 3.x.l.3-3.x.l.x of Segment, Element, Subsystem and

Assembly Levels.

2. Mil-Std 2165 (Testability Program for Systems and Equipments) should be updated to
include test bus architecture trade-off analyses and detailed design criteria in Appendix B,
Inherent Testability Checklist.

Mil-Std 2165 defines the requirements for performing a testability design and
assessment. The requirements defined in Tasks 101, 102, 201, 202 and 203 should be
updated to reflect the emerging standard test buses and boundary scan techniques. The
criteria defined in the next section should be added to the Checklist, as questions, to
assure that test bus trade-offs are considered throughout the system design cycle.

3. Further design guidance for both Mil-Stds (1814 and 2165) should include the
following criteria as defined for systems, modules and devices. This criteria has been
taken from the studies performed during the test bus evaluation and is applicable to any
general test bus development effort.

6-1

a) The system test bus architecture should take into account the following criteria;

• Determine the system requirements for the overall weapon system test strategy
considering life cycle test requirements such as design verification, factory test,
safety, maintenance, depot repair, etc.,

• Determine what diagnostic information is required (e.g. go/nogo, detailed
results, fault log, fault filters, sensor data, etc.) and what are the external
interfaces; such as the pilot, the maintainer, another subsystem, down the
backplane, etc.,

• Determine how the system test information will be communicated and what
system bus is required based on data, throughput, expansion, etc.,

• Ensure that the lowest level of test information can be interrogated from the
highestlevel via a hierarchy of test buses (e.g. 1553-to-1149.5-to-1149.1),

• Determine which module test bus is required based on data, throughput,
expansion, size, topology, etc.,

- IEEE 1149.1, if a small number of modules (<~6), and a fixed
system configuration, and/or using "dumb modules"

- IEEE 1149.5, if a significant number of modules (>~4), with a
non-fixed configuration, and/or "smart modules"

b) The module test bus architecture should further consider the following criteria;

• Consider the module test strategy and the integration of its test features with the
test bus capabilities (e.g. BIT software, LRM BIST, fault log, etc.),

• Determine if an IC test bus is needed based on test requirements, FD/FI, data,
throughput, expansion, emulation, etc.,

• If the designs use ASICs from different vendors or ASICs intended for multiple
applications, specify 1149.1 so that test information may be accessible via a
common method,

• If the design is all or partial analog (mixed signal), consider using 1149.1 to
partition the analog circuitry from the digital, and to communicate analog
diagnostic results to the module diagnostic control function,

• If the system/module/or IC test bus is not justifiable on its own, consider "added
value" features which are useful for related system requirements (e.g. functional-
messages, hardware or software debug & integration, etc.),

• There is no need to completely dedicate a system level test bus unless fault
tolerance (e.g. for safety requirements) or throughput requirements are critical.

c) The device test bus architecture should further consider the following criteria;

• When physical access is lost (can't be probed) at a node on a module (i.e. in
multi-chip module applications, etc.) boundary scan should be implemented. As a
general rule, node depths of greater than five clock cycles should require a
boundary scan cell.

6-2

• Consider interfacing all embedded device testability features (e.g. internal scan,
BIST, Cross-check, etc.) to the IEEE 1149.1 test bus for reuse at the module and
system test levels.
. All custom or VLSI device designs (ASICs, Linear, FPGA, Processors, etc.)
should be required to perform a trade-off analysis on the use of and interface to
the IEEE 1149.1.

- If there is a desire to use standard test methods (boundary scan),
specify 1149.1,

- Consider off-the-shelf devices with IEEE 1149.1 over equivalent
devices without 1149.1,

- Consider impacts of fault detection and isolation requirements.

6.2. Management Recommendations.
6.2.1 DoD Policies and Directives.
1. A standard for data and information protocols needs to be established for diagnostic
data that is passed across system buses to both the system fault management function and
directly to ground maintenance.

A critical issue in systems today is the inability to communicate common diagnostic
information between electronic subsystems. In order to assure fleet level trending and
logistics analysis for diagnostic maturation, a common set of metrics needs to be specified
that support diagnostic analysis. These metrics should take into account fault log data
recorded on the module for use in the Depot. At the aircraft system level the
standardization of this data is critical for using standard test equipment at the flight line
(e.g. IMIS, IFTE CTSm, portable testers, etc.) to augment and support the two level
maintenance concepts.

2. The DoD should promote and endorse the use of selective commercial standard test
buses in weapon system developments. These should include;

• IEEE 1149.1 as the device-to-device level test bus,
• IEEE PI 149.5 as the core module backplane bus (when it is passed),

• Other IEEE 1149.x standards as they emerge.

The DoD should provide a focal point for defense industry test bus standards for
definition, feedback, balloting, etc. The DoD should provide seed funding for studies and
developments of new standards within the commercial industry. Unfortunately, many
standards lack the financial backing to ever get off the ground. DoD could provide the
forum to educate industry, raise confidence that standards would be supported in the near
term, and spur other commercial industry to support the standards. This could include
silicon suppliers, CAE vendors, test equipment manufacturers, and others. The test
community also needs standard metrics for the communication of test bus implementation
benefits (i.e. quality, cost, productivity, cycle time, etc.).

6-3

3. Each contractor should be required to use the defacto commercial standard test buses
(e.g. IEEE 1149.1, PI 149.5, etc.) as established within the weapon system test bus
architecture or else provide justification why not.

With today's highly integrated technologies DoD has already come to the realization
that standards best work if supported across the entire electronics industry. By joining
forces with the commercial sector a greater amount of funding can be brought to bear on
the institutionalization of the standard and its supporting products. As systems become
more and more integrated and are designed with large portions of multi-vendor
components, the need for standard test buses increases greatly. Military systems have
advanced to the point where most systems require test buses and, therefore, a mandate to
use standard test buses will ensure implementation unless valid justification exists to
warrant an exception.

4. DoD standard ATE programs (e.g. MATE, F-22 CATS, CASS, IFTE, etc.) need to
support common access to standard embedded test buses and the diagnostic results
contained on the module and subsystem.

The conventional wisdom behind each standard Automatic Test Equipment (ATE)
built in DoD has been to ignore the embedded diagnostic capability of the unit under test.
It is essential to the success of 2-level maintenance that the Depot ATE use the standard
test buses to interface to module BIT logs and for exercising additional test capability,
such as ASIC BIST. It is also imperative that the production test in the factory utilize
these capabilities to increase yields, cycle time and decrease ATE costs. The F-22
Common Automatic Test System (CATS) is providing an interface to both IEEE 1149.1
and the IEEE PI 149.5 which will provide a critical link from the Field to the Depot.
Whereas the Army's IFTE and the Navy CASS ATE do not yet provide such interfaces.

5. Current AF thrusts in Test Program Set generation tools do not leverage embedded
module techniques (such as IEEE 1149.1 and boundary scan). These programs (Virtual
Test, PAP-E,...) need to be briefed on the advantages of Hierarchical Testability.

As in the case above with ATE, Test Program Set (TPS) generation tools have not
linked up with the onslaught of standard test bus (and boundary scan) automation tools
hitting the market. These tools provide the control to the test bus and the generation and
verification of test vectors. New technology starts in TPS tools (such as Virtual Test)
need to understand how the requirements based testing (typically analog in nature)
interfaces with vector based testing (typically used for digital) and what role the standard
test bus architecture plays in these tools.

6. DoD needs to decide on which standard data structures (e.g. EDIF, WAVES, etc.)
and control languages (e.g. BSDL, HSDL, SVF, etc.) they will use so that CAE vendors
and users can better support these structures.

The standards efforts in test vector data and information structures are essential tools
to the goal of tester independence for TPSs. The current standards have overlapping
capabilities. Likewise test bus standard control languages have both complimenting and
overlapping capabilities. The DoD needs to drive the use of these standards and give
guidance to the Defense Industry community on their applicability. Demonstration

6-4

programs, such as the AF PAP-E program, should be conducted to further clarify their
advantage to weapon system supportability.

6.2.2 DoD R&D Funding Recommendations.

1. DoD should establish a capability for verification of test bus standards compliance
and for interoperability of test buses within weapon system developments.

DoD needs to create an ability to assure that test bus implementations meet the
specifications. Commercial tools, such as the AT&T TapDance tool for IEEE 1149.1,
should be developed to provide weapon system integrators this capability. A procedure
to assure the interoperability of test buses should be provided for cases where common
modules are to be used across subsystems and where different test bus implementations
interface to the next level test bus. For example, it is essential that interoperability is
verified where multiple module vendors have used different chip set implementations or
the IEEE PI 149.5 (and its avionic extensions) that reside on a common subsystem
backplane.
2 IEEE PI 149.5 avionic (or vetronic) extensions should be defined for each unique
application (e.g. master only, slave only, maintenance controller, etc.) so that
interoperability between multi-vendor modules is assured.

This is especially critical for the major aircraft developments (e.g. F-22, F-16
upgrades etc.). The Air Force needs to take a proactive role in establishing the definition
of these extensions. This effort is being pursued by the Society of Automotive Engineers
(SAE) with a watchful eye from the IEEE 1149.5 committee. However, additional
module bus extensions (e.g. TSMD, scannable connectors, etc.) are needed to improve
the fault tolerance of critical safety driven systems (such as aircraft guidance systems).

3 An approach, similar to IEEE 1149.1, to the interface and testing of analog circuits,
should be championed by the DoD due to the impact on mission reliability from aircraft
sensor system failures.

The work being done by the IEEE PI 149.4 committee should hold much interest for
DoD weapon system developers. High frequency aircraft sensors (e.g. Radars, GPS, IFF,
etc) have become a critical impact to the fault tolerance of avionic systems. Few efforts
have been undertaken by DoD to solve the lack of embedded diagnostic capability in
these subsystems. One potential solution may be to interface to an A/D with IEEE
1149.1 for the test results. But much more is needed. Just as boundary scan has become
the key test approach for high density digital circuitry, so is a structured technique
needed for testing RF/TF, electro optics, lasers, etc.

4 A standard test bus simulation model library should be developed based on the
implementations and extensions described in this document. This library should include
VHDL models on the IEEE 1149.1 TAP, IEEE 1149.5 master, slave, etc.

One of the major cost benefits in using a standard test bus architecture is in the ability
to reuse (both vertically and horizontally) hardware and software test algorithms and
control structures. The test bus evaluation study has pointed out the advantage in using
common chip sets, control software, and test bus languages across multiple designs.

6-5

Another area for reuse is to create a common VHDL model library of the core test bus
architectures. This library could be provided to designers across the Defense industry
assuring a better success of bus interoperability.

5. DoD contractors who use commercial off-the-shelf parts (e.g. devices, modules,
subsystems, etc.) that have a standard test bus (e.g. IEEE 1149.1, 1149.5, etc.) within
them, should be given incentives by the DoD.

The larger electronics companies are beginning to see the advantage to using standard
test buses in their manufacturing areas. However, the perception that added test circuitry
is a cost burden still persists within the design community. This reflects the old "piece
cost" mentality and does not consider the module and system benefits. IC/ASIC vendors
will not add test unless it is required by the customer, yet the customer (the weapon
system integrator) is not given incentives by the DoD. Requirements alone may not be
sufficient motivation to assure the best test approach. Financial incentives could be a
stronger motivater to accelerating the implementation of standard test bus architectures in
today's designs.

6. The DoD needs to establish a training and education program focused on the benefits
and design of standard test buses.

The commercial community (e.g. Self-Test Services, TI, etc.) has already developed
some excellent courses in the application of IEEE 1149.1 and associated products. The
DoD needs to look at education of system and module test buses as applied in the
defense industry environment since the above courses are targeted for the commercial IC
developer. The ownership of the training and education process is likely the fastest way
the Services could institutionalize the use of standard commercial test buses in their
products.

7. The AF should take the lead to develop a lessons learned data base on all standard test
bus applications and boundary scan implementations so that the use of commercial test
bus standards are accelerated.

The Test Bus Evaluation is a good start to such a data base. As indicated by the TBE
study most of the current lessons learned will come from the IEEE 1149.1, since it has
been in existence for some time. However, there have been many implementations of the
module level TM-Bus that could be recorded. This lessons learned data base could be a
valuable asset to a Defense sponsored training course on the use of standard test buses.

8. Further DoD investments for studies in boundary scan techniques and developments
of automation tools are needed in the following areas;

• Diagnostic algorithm development,

• Test vector generation (e.g. ATPG, etc.),

• Data compaction and compression techniques,

• Test program generation,

• Analog/RF sensor test bus interfaces.

6-6

SUMMARY

It should be noted that significant issues exist in test and diagnostic verification. Most
DoD programs require quantified FD/FI percentages (e.g. 98% detection), but the
implementor is left to his/her experience to design to that requirement. Additionally,
FD/FI verification is performed manually, which is subjective. However, if specific test
requirements are specified, such as the test buses and the DFT techniques required, then
all implementations will share a common set of test capabilities, regardless of the
engineering design experience applied. The above recommendations are just a start in the
pursuit to achieve this goal.

6-7

APPENDIX A.

COMMERCIALLY AVAILABLE TEST BUS PRODUCTS

The following tables list products supporting test bus standards. Note that the majority
of support is for the IEEE 1149.1 test bus. To qualify for publication in this appendix,
products must have been available by the end of 1992. Certainly, there will always be
new products flowing from silicon vendors; better instrumentation to manufacture, test,
and debug these designs; and new tools to help glue the design and manufacturing flows
together. The lists below may not contain all vendors and tools due to the dynamic
growth of the industry.

Silicon.

A list of silicon vendors has been provided. These tables are divided into ASIC vendors
and catalog product vendors. The catalog products shown are those gleaned from many
sources, and many vendors.

Instrumentation and ATE.

A list of Automatic Test Equipment and Instrumentation which has support for the test
bus standards is provided. Some of these products will require a hardware upgrade to
allow high speed access to the test bus architecture on your boards, while others are
driven by software, only.

TOOLS,
A list of software and hardware tools is provided which either stand alone or provide
support services for another piece of test equipment. Keep in mind that the tools may be
what bind your silicon to your test resources. It is very important that these components
"play" together. Database translation software development tasks should not have to be
a part of system design, development, and test.

STIMMARY.

In summary, there are, in fact, many vendors supporting the IEEE Std 1149.1-1990
architecture and few supporting the lesser known standards (PI 149.5, PI 149.2, etc.).
There are also many uses for the architecture, once the commitment has been made to
incorporate it in your system. However, it is very important that each vendor and tool be
investigated so that your overall test bus methodology can be a successful one.

ASIC Foundries with 1149.1 Support.

• Analog Devices

• AT&T Microelectronics

• Atmel

• European Silicon Structures

A-l

Fujitsu

GEC-Plessey Semiconductors

Gould-AMI Semiconductors

Harris

Honeywell

Lasarray

LSI Logic

Matra

Mitsubishi

Motorola

National Semiconductor

NCR

NEC

OKI

Philips

Raytheon

SGS-Thomson

Siemens

Texas Instruments

Thomson Composants Militaires et Spatiaux

Toshiba

United Technologies Microelectronics Center

Vertex

VLSI Technology

FPGA Vendors with 1149.1 Support.

• Crosspoint Solutions

• Texas Instruments

• Xilinx

A-2

VENDOR PART NUMBER DESCRIPTION

Advanced RISC Machines ARM60 RISC processor

Advanced RISC Machines ARM60 RISC processor

Advanced RISC Machines MEMC20 Memory Controller

AMD Am29030 Common Imaging Engine

AMD AM29035 Common Imaging Engine

AMD AM29200 RISC microcontroller

Analog Devices ADSP21020 Digital Signal Processor

AT&T WEDSP16C Digital Signal Processor

AT&T WEDS16J Digital Signal Processor

AT&T WEDS 1610 Digital Signal Processor

AT&T WEDS1616 Digital Signal Processor

AT&T 497AA Boundary Scan Master

Brooktree Bt463 RAMDAC

Fujitsu MB86930 SPARC™-based controller

Honeywell HÜU2000 Interface between VHSIC TM-bus and
1149.1

I-Cube Design Systems IO160 Field Programmable Interconnect Device

Integrated Device Technology IDT79 R4000 PC MIPS R4000 compatible processor

Intel i80486DX-50 Microprocessor

Intel i82490DX Second level 80486DX cache SRAM

Intel i82495DX Second level 80860DX cache controller

Intel i80860XP RISC processor

Intel i82490XP Second level 80860XP cache SRAM

Intel i82495XP Second level 80860XP cache controller

MIPS R4000 RISC Processor

Motorola MC68040 Microprocessor

Motorola MC68330 Microcontroller

Motorola MC68340 Microcontroller

Motorola MC56002 Digital Signal Processor

Motorola MC56156 Digital Signal Processor

Motorola MC86001 Digital Signal Processor

A-3

Catalog Parts with 1149.1 Support - Continued
Motorola
National Semiconductor
National Semiconductor

MC88110
SCANPSC100FSC
SCAN18245TSSC

RISC processor
Boundary-scan parallel/serial converter
18 bit transceiver

National Semiconductor SCAN18373TSSC 18 bit D-type transparent latch
National Semiconductor SCAN18374TSSC 18 bit D-type edge triggered flip-flop
National Semiconductor SCAN18540TSSC 18 bit inverting line driver
National Semiconductor
Siemens
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments
Texas Instruments

SCAN18541TSSC 18 bit line driver
SAB-R4000PC
SN74BCT8240

MIPS R4000 compatible processor
Octal inverting bus buffer

SN74BCT8244 Octal bus buffer
SN74BCT8245 Octal bus transceiver
SN74BCT8373
SN74BCT8374

Octal D-type transparent latch

SN74ABT8240
Octal D-type edge triggered flip-flop

SN74ABT8244
Octal bus inverting buffer
Octal bus buffer

SN74ABT8245 Octal bus transceiver
SN74ABT8373
SN74ABT8374
SN74ABT8543
SN74ABT8646
SN74ABT8652
SN74ABT8952
SN74ABT18240
SN74ABT18244
SN74ABT18245
SN74ABT18373
SN74ABT18374
SN74ABT18502
SN74ABT18504
SN74ABT18646
SN74ABT18652
TFB2001

Octal D-type transparent latch
Octal D-type edge triggered flip-flop
Octal registered bus transceiver
Octal registered bus transceiver
Octal registered bus transceiver
Octal registered bus transceiver
18 bit inverting bus buffer
18 bit bus buffer
18 bit bus transceiver
18 bit D-type transparent latch
18 bit D-type edge triggered flip-flop
18 bit registered bus transceiver
20 bit registered bus transceiver
18 bit registered bus transceiver
18 bit registered bus transceiver
Futurebus+ parallel cache controller

A-4

Catalog Parts with 1149.1 Support - Continued
Texas Instruments TFB2021 Fiiturebus+ datapath unit

Texas Instruments TFB2050 Futurebus+ parallel protocol cache
controller

Texas Instruments TFB2010 Futurebus+ arbitrated bus controller

Texas Instruments TFB2011 Futurebus+ programmable central bus
arbiter

Texas Instruments TMS320C40 Floating point parallel processing unit

Texas Instruments TMS320C50 Digital Signal Processor

Texas Instruments TMS320C51 Digital Signal Processor

Texas Instruments TMS320C53 Digital Signal Processor

Texas Instruments TMS34082 Floating point graphics co-processor

Texas Instruments SuperSPARC SuperSPARC processor

Texas Instruments SuperSPARC SuperSPARC cache controller

Texas Instruments TMS29F816 Diary EEPROM memory

Texas Instruments SN74ACT8994 Digital bus monitor
Texas Instruments SN74ACT8990 Test Bus Controller

Texas Instruments SN74ACT8997 Scan Path Linker
Texas Instruments SN74ACT8999 Scan Path Selector

Toshiba MB86900 MIPS R4000 compatible processor

TRW TMC22190 Digital video encoder

UVC UVC7710 Multimedia Microprocessor

VLSI Technology VY86C060 RISC processor

VLSI Technology VY86C061 RISC processor

VLSI Technology VY86C600 RISC processor

A-5

Instrumentation and ATE Suppliers with 1149.1 SuDDort
PRODUCT DESCRIPTION COMPANY

1 BST800 MDA with 1149.1 subsystem
for production PCB testing

Brothers Electronics

2 S2000 Functional test system Computer Automation
3 BA-1149.1 Boundary-Scan bus analyzer for

use with HP 1650/10/40 logic
analyzers

Corelis

4 CVXI-1149.1 VXIbus boundary-scan
controller module

Corelis

5 PC-1149.1 PC/AT bus boundary-scan
controller card

Corelis

6 PM3580 Logic analyzer family Fluke/Philips
7 9400 MDA with boundary-scan test Fluke/Philips
8 GR-227x™ In-circuit tester family GenRad
9 GR-228x™ In-circuit tester family GenRad

10 HP 3070™ series In-circuit tester family Hewlett Packard
11 HP3065AT™ Board test system Hewlett Packard
12 XLScan Prototype test system IMS
13 ScanView Software package which allows

ASSET™ to communicate with
conventional ATE via an RS-
232 interface, thus providing
simultaneous in-circuit and
boundary-scan test capabilities

Intellitech

14 MFC1149.1 Plug-in board for PC Jenoptik Carl Zeiss
JENAGmbh

15 ISS 2000 Component tester Schlumberger
16 S790 Board tester Schlumberger
17 Z1800™ series In-circuit board testers Teradyne
18 Z8000™ series Combinational board testers Teradyne
19 L300™ series Combinational and functional

board testers
Teradyne

A-6

Tool Vendors with 1149.1 Support
PRODUCT

proTEST-PC™

10

11

Boundary Scan Master
Evaluation Kit

TAPDANCE™

DESCRIPTION
PC-based boundary-scan test controller

PC-based hardware/ software kit used
to evaluate the 497AA Boundary Scan
Master and experiment with 1149.1
Generates test vectors for checking
integrated circuit designs for
conformance to 1149.1

Test Assistant

12

13

SmartModel® Library

Intelligen™

Circuit synthesis tool which compiles
1149.1 logic

COMPANY
Alpine
Systems

Image

AT&T

AT&T

Behavioral
simulation

models for board-level

Test Compiler™

VICTORY™

ASSET™
System

Diagnostic

Circuit synthesis handling partial scan
andATPG .
1149.1 architecture
vector formatter

synthesizer and

Modular tool set for performing
boundary-scan testing of PCBs,
including automatic test generation and
diagnostics

ASSET™ Test System

ASSET™
Function Library

Scan

PC-based hardware/ software system
for access and control of 1149.1 test
structures for design verification and
debug

Compass Design
Automation
Logic Automation

Racal-Redac

Synopsys

Teradyne

PC hardware and run-time support
software to support the application of
ASSET test programs

Scan
Engine

14

TDS®

BST-Explorer PM 3705

A library of C++ routines used for
accessing ASSET hardware from a
custom C++ program
Software component which, when
coupled with an SN74ACT8990 forms
the basis for an embedded 1149.1-
driven self-test.

Texas Instruments

Texas Instruments

Texas Instruments

Texas Instruments

Data transport environment supporting
links to CAE and ATE for simulation
and test __
PC-based hardware/software for access
and control of 1149.1 test structures.

TSSI

FLUKE

A-7

Useful Literature and Tutorial Material
ORDER

NUMBER
TITLE DESCRIPTION SOURCE

E1017-
90001

HP Boundary-Scan Tutorial
and BSDL Reference Guide

Includes BSDL syntax guide Hewlett Packard

EH0321-0 The Test Access Port And
Boundary-Scan Architecture

hi depth description and
application of 1149.1 with paper
reprints

IEEE

SH13144 IEEE Standard Test Access
Port and Boundary-Scan
Architecture

TREE Std 1149.1-1990 IEEE

Serial Vector Format (SVF)
Specification

Defines vector format for
parallel and 1149.1 serial
vectors for CAE and ATE
exchange purposes

Texas Instruments

SATB002 Scan Educator PC-based training software
introducing 1149.1

Texas Instruments

SSYA002A Testability Primer 1149.1 introduction and
application notes

Texas Instruments

SSYA006 SCOPE™ Testability
Products Applications Guide

Over 20 application notes and
paper reprints

Texas Instruments 1

TRADEMARKS

proTest-PC is a trademark of Alpine Image Systems, Incorporated

TAPDANCE is a trademark of AT&T

GR-227x and GR-228x are trademarks of GenRad, Incorporated

HP 3070 and HP 3065AT are trademarks of Hewlett Packard Company

SmartModel is a registered trademark of Logic Automation Incorporated

SPARC is a trademark of Sun Microsystems, Incorporated

Test Compiler is a trademark of Synopsys Incorporated

VICTORY, L300, Z1800 and Z8000 are trademarks of Teradyne, Incorporated

TDS is a registered trademark of Test Systems Strategies, Incorporated

ASSET and SCOPE are trademarks of Texas Instruments Incorporated

Texas Instruments recognizes all trademarks used in this document

A-8

APPENDIX B.

BIBLIOGRAPHY

Andrews, I, "IEEE's PI 149.5 Bus Facilitates JTAG," ATE and Instrumentation
Conference, January 1992

Andrews, W., "JTAG Works to Standardize Chip, Board and System Self-Test,"
Computer Design, July 1,1989

Archer, H.S., "A Comprehensive Analyzer for the JIAWG High Speed Data Bus," IEEE
National Aerospace and Electronics Conference (NAECON), 1990

Arment, EX., Coombe, W.D., "Application of JTAG for Digital and Analog SMT," ATE
and Instrumentation Conference West, 1989

Aubert, J., "Boundary Scan Modification to Enhance Multichip Module Testing,"
National Aerospace Electronics Conference (NAECON), 1992

Avra, L., "A VHSIC ETM-Bus-Compatible Test and Maintenance Interface," IEEE
International Test Conference, 1987

Ballew, W.D., Streb, L.M., "Board-Level Boundary Scan: Regaining Observability with
an Additional IC," IEEE International Test Conference, 1989

Bardier, P., d'Hervilly, G., "Performance Issues in HSDB Standard (SAE-AS-4074.1):
How To Tune the HSDB Protocol," Real-Time Data Communications for Military
Applications Conference, November 1990

Barton, P. and Dolan, C, "ASICs and Testability Devices Revolutionize Testability
Design," Texas Instruments Technical Journal, July/August 1988

Beenker, F.P.M., "Systematic and Structured Methods for Digital Board Testing," IEEE
International Test Conference, 1985

Bennetts, R.G., Osseyran, A., "IEEE Standard 1149.1-1990 on Boundary Scan: History,
Literature Survey, and Current Status," Journal of Electronic Testing: Theory and
Applications, March 1991

B-l

Bermingham, W.J., Fagotti, M.R., Rosen, W.A., Zeitz, R., "A Throughput and Latency
Comparison of Linear and Ring Fiber Optics Buses," SPIE - The International Society for
Optical Engineering, 1990

Bhavsar, D.K., "Testing Interconnections to Static RAMs," IEEE Design & Test of
Computers, June 1991

Bicknell, J., "Advanced Avionic Communications for Military Use," IEE Colloquium on
'Time Critical Communications for Instrumentation and Control', November 1989

Bicknell, J„ "The High Speed Data Bus (for Military Avionics)," Military Avionics
Architecture for Today and Tomorrow. 1988 Seminar Proceedings, November 1988

Bingham, P., Asker, M., "ASIC Layout Software Builds in JTAG Rules," Electronics
Manufacture & Test, March 1991

Borland, A., "Experience of Designing JTAG ASICs Within System X," IEE Colloquium
on 'Application and Development of the Boundary-Scan Standard', December 1990

Breuer, M.A., Lien, J.C., "A Test and Maintenance Controller for a Module Containing
Testable Chips," IEEE International Test Conference, 1988

Brglez, F., Gloster, C, Kedem, G., "Hardware-Based Weighted Random Pattern
Generation for Boundary Scan," IEEE International Test Conference, 1989

Broderick, S., Wills, K., "The Intricacies of Boundary Scan Solutions," Evaluation
Engineering, September 1991

Brown, D.R., "The Development of an EFAbus Ground Demonstration System," MIL-
STD-1553B and the Next Generation, November 1989

Brown, D.R., "Issues Concerning the Implementation of High Speed Optical Databus
Systems," IEE Colloquium on 'Future Military Avionic Architectures', May 1990

Brown, J., "Design of a Parallel Bus-to-Scan Test Port Converter," Electro International
Conference, 1991

Bruce, W.C., Gallup, M.G., Giles, G., Munns, T., "Implementing 1149.1 on CMOS
Microprocessors," IEEE International Test Conference, 1991

Caldwell, B., "Implementing 1149.1 Boundary Scan for Board Test," Test Engineering
Conference, 1991

B-2

Caldwell, B. and Langford, T., "Is IEEE 1149.1 Boundary Scan Cost Effective: A Simple
Case Study," IEEE International Test Conference, 1992

Collins, P., "Boundary Scan-the ATE Vendors* View," IEEE International Test
Conference, 1988

Cortez, R., Dandapani, R., Yeager, M., "Issues of Integrating the IEEE Std 1149.1 into a
Gate Array," VLSI Test Symposium, 1991

Covington, R.R., Goodwin, R.C., Reed, T.A., "Boundary-Scan Testing with ATEs,"
ATE and Instrumentation Conference, January 1992

Cron, A.D., "A Survey of Boundary-Scan Devices, Instrumentation, and Support Tools,"
NEPCON East, 1992

Cron, A.D., "IEEE-1149.1 Use in Design for Verification and Testability at Texas
Instruments," The Second Annual IEEE ASIC Seminar and Exhibit, 1989

Crouch, A. and Pyron, C, "Impact of JTAG/P1149.1 Testability on Reliability,"
Government Microcircuit Applications Conference (GOMAC), 1989

Dahbura, A.T., Uyar, M.U., Yau, C.W., "An Optimal Test Sequence for the JTAG/TEEE
PI 149.1 Test Access Port Controller," IEEE International Test Conference, 1989

Daniel, W., Young, G., "VHSIC Testability: An IC- to System-Level Implementation,"
Texas Instruments Technical Journal, July-August 1988

Daniel, W., TI internal memorandum, October 1989

Daniel, W., Miller, E., "Implementing BIST and Boundary Scan on VHSIC/VLSI
Designs Using the JTAG/IEEE PI 149.1 Test Bus," Advanced Microelectronics
Qualification, Reliability and Logistics Workshop, July-August 1989

Daniel, W., "Fault Emulation Using Boundary Scan," IEEE VLSI Test Symposium, April
1990

Daniel, W., "Design Verification of a High Density Computer Using IEEE 1149.1," IEEE
International Test Conference, 1992

Daniel, W., "Embedding an IEEE 1149.1 Test Controller," Design and Test Expo,
January 1993

B-3

Davidson, S., "Merging BIST and Boundary Scan at the IC level," Wescon Conference
1988

De Jong, F., Matos, J.S., Ferreira, J.M., "Boundary Scan Test, Test Methodology, and
Fault Modeling," Journal of Electronic Testing: Theory and Applications, March 1991

De Jong, F., "BITL Format: A Way of Representing Boundary Scan Test Vectors,"
Electronics Letters, July 5,1990

De Jong, F., "Boundary Scan Test Used at Board Level: Moving Towards Reality,"
IEEE International Test Conference, 1990

Dennis, P., "Advanced Diagnostic Architecture for JIAWG Compliant Designs" IEEE
AUTOTESTCON, 1990

Dervisoglu, B.I., "Using Scan Technology for Debug and Diagnostics in a Workstation
Environment," IEEE International Test Conference, 1988

Dervisoglu, B.I., "Boundary-Scan Update IEEE PI 149.2 Description and Status
Report," IEEE Design and Test of Computers, September 3,1992

Deshayes, J.G., "Boundary Scan Methods for Interconnection Testing on Electronic
Modules," Elektronik, April 28,1992

Dettmer, R, "JTAG-Setting the Standard for Boundary-Scan Testing," IEEE Review
February 16,1989

DeSena, A., "Interface Brings Standardized Design for Testability Closer to Reality "
Computer Design, May 15,1988

Dingle, S.L., Lacroix, L.D., Twombly, P.A., "The Advantages of Boundary-Scan
Testing," VLSI Test Symposium, 1991

Donnell, J., "Boundary Scan Puts Tomorrow's Devices to Test," Electronic Design, June
27,1991

Eichelberger, E. B. and Williams, T.W., "A Logic Design Structure for LSI Testability,"
Journal of Design Automation and Fault-Tolerant Computing, May 1978

Ellis, M., Jr., Bell, B., "Bottom-Up Techniques Propel Board Testability," Electronic
Design, May 24,1990

B-4

Fasang, P.P., "Application of Boundary Scan to Analogue-Digital ASIC Test," Australian
Electronics Engineering, June 1990

Fasang, P.P., "ASIC Testing in a Board/System Environment," IEEE Custom Integrated
Circuits Conference, 1989

Fichtenbaum, M.L., Robinson, G.D., "Scan Test Architectures for Digital Board
Testers," IEEE International Test Conference, 1990

Fitch, K.D., Kane, J., "Application of Boundary-Scan and Full-Chip BIST to a 3 ASIC
Chip Set," IEEE Custom Integrated Circuits Conference, 1991

Fleming, P., "Expanding Beyond Boundary Scan Techniques and JTAG," Wescon
Conference, 1988

Fleming, P., "Semiconductor Perspective on Test Standards," IEEE International Test
Conference, 1988

Forrest Tomes, C, "New Avionics ATE Considerations for the Boeing 777," ATE and
Instrumentation Conference, January 1992

Gallup, M.G., Ledbetter, W., Jr., McGarity, R, McMahan, S., Scheuer, K.C., Shepard,
CG., Sood, L., "Testability Features of the 68040," IEEE International Test Conference,
1990

Gartner, P., Büchner, T., Roos, G., Schwederski, T., "Boundary Scan and its Application
to the IMS Gate Forest," Journal of Semicustom ICs, December 1991

Grace, P., "Scan Design Gives Chip Level Diagnosis at System Test," New Electronics,
March 1989

Graff, G., "Scanning the Boundaries of Test," Electronics Manufacture & Test,
September 1989

Griffin, K., "VHSIC Phase 2 Test Requirements for the Depot," AUTOTESTCON, 1989

Grimberg, O., "An advanced Testability Concept for Space Applications," ESA
Electronic Components Conference, 1990

Halliday, A, Young, G., Crouch, A., "Prototype Testing Simplified by Scannable Buffers
and Latches," IEEE International Test Conference, 1989

B-5

Hamlin, D.B., "The Unisys Implemented, JIAWG Compliant, Linear, Token-Passing
HSDB Chip Set Description," IEEE National Aerospace and Electronics Conference
(NAECON), 1991

Hansen, P., "Implementing Boundary Scan Test Strategies," AUTOTESTCON, 1990

Hansen, P., "Mixed Technology Boards Using Scan/Non-Scan Parts," Test, September
iyyu

Hansen, P., "Testing Conventional Logic and Memory Clusters Using Boundary Scan
Devices as Virtual ATE Channels," IEEE International Test Conference 1989

Hansen, P., "Strategies for Testing VLSI Boards Using Boundary Scan," Electronic
Engineering, November 1989

Hansen, P., Borroz, T., "Tough Board Test Problems Solved With Boundary Scan,"
Electronics Test, June 1989

Hansen, P., "Testing the Internal Silicon of Boundary-Scan Devices Using Boundary-
Functional Test and Serial Vector Format," NEPCON West, 1992

Hao, C.H., Scholz, H.N., Tulloss, R.E., Yau, C.W., Wach, W, "Computer Aided
Structured Design for Testability of ASICs," 8th Australian Conference on
Microelectronics, 1989

Harrod, P.L., Biggs, J.P., "Boundary Scan Design for a Memory Controller," IEE
Colloquium on 'Application and Development of the Boundary-Scan Standard'
December 1990

Hassan, A., Agarwal, V.K., Rajski, J„ Dostie, B.N., "Testing of Glue Logic
Interconnects Using Boundary Scan Architecture," IEEE International Test Conference,
iyoy

Herrmann, J.J., "High Speed Data Bus Active Coupler," IEEE National Aerospace and
Electronics Conference (NAECON), 1991

Hewlett Packard, HP Boundary-Scan Tutorial and BSDL Reference Guide

Hilla, S.C., "Boundary Scan Testing for Multichip Modules," IEEE International Test
Conference, 1992

B-6

Hobbs, E.D., "Practical Considerations for Designing ASICs Which Incorporate Scan
Path and JTAG Techniques," IEE Colloquium on "Automated Testing and Software
Solutions', April 1992

Hobson, R.F., "Combining Boundary Scan With I/O and Other System Functions to
Reduce System Complexity," Microelectronics Journal, May 1992

Hughes, J.L.A., Pahlajrai, P., "Effects of Packaging and Interconnect Technology on
Testability of Printed Wiring Boards," SPIE - The International Society for Optical
Engineering, 1991

IBM, Honeywell, and TRW, VHSIC Phase 2 Interoperability Standards: TM-Bus
Specification - Version 3.0,1987

IEEE/ANSI 896 Standard, Futurebus+

IEEE/ANSI 960 Standard, FASTBUS

IEEE/ANSI 1014 Standard, VMEbus

IEEE/ANSI 1295 Standard, Multibus H

IEEE Proposed Standard P1394, High Speed Serial Bus

IEEE Proposed Standard PI 149.2 Draft: IEEE Extended Digital Serial Subset

IEEE Proposed Standard PI 149.4: IEEE PI 149.4 Mixed-Signal Test Bus Standards

IEEE Proposed Standard PI 149.5 Draft: IEEE Standard Module Test and Maintenance
(MTM) Bus Protocol

IEEE Standard 1149.1-1990: IEEE Standard Test Acccess Port and Boundary Scan
Architecture, 1990

Jackson, C, "Fiber Optics Gives Avionics a Lift," Photonics Spectra, August 1989

Jacob, G., "Functional Board ATE," Evaluation Engineering, March 1990

Jarwala, N., "Boundary Scan Promises Test Alternatives," Design Automation, April
1991

B-7

Jarwala, N., Yau, C.W., "A New Framework for Analyzing Test Generation and
Diagnosis Algorithms for Wiring Interconnects," IEEE International Test Conference,
1989

Jarwala, N. and Yau, C.W., "Achieving Board-Level BIST Using the Boundary-Scan
Master," IEEE International Test Conference, 1991

Jones, T.D., Millward, R., "An Initial Design Study of the Use of Boundary Scan to
Simplify System Test (guided weapons)," IEE Colloquium on Application and
Development of the Boundary-Scan Standard', December 1990

Jung-Cheun Lien, Breuer, M.A., "An Optimal Scheduling Algorithm for Testing
Interconnect Using Boundary Scan," Journal of Electronic Testing: Theory and
Applications, March 1991

Kajitani, H., Sato, H., Saito, H., Oresjo, S., "Practical Test Generation With IEEE
1149.1 Boundary-Scan," ATE and Instrumentation Conference, January 1992

Kar, S., Chu, M., "Software Approaches to Test Scan-Related Boards," ATE and
Instrumentation Conference West, 1989

Karpenske, D, Talbot, C, "Testing and Diagnosis of Multichip Modules," Solid State
Technology, June 1991

Koeter, J., "Designing IEEE 1149.1 Compatible Boundary-Scan Logic Into an ASIC
Using Texas Instrument's Scope Architecture," Third Annual IEEE ASIC Seminar and
Exhibit, 1990

Ladner, D.C., "Reconfigurable Hardware-From Design to Manufacturing Test," Wescon
Conference, 1988

Landis, D.L., Singh, P., "A Wafer Scale IEEE 1149.1 Case Study," Test Engineering
Conference, 1991

Landis, D.L., "A Self-Test Methodology for Restructurable WSI," International
Conference on Wafer Scale Integration, 1990

Landis, P., "Applications of the IEEE PI 149.5 Module Test and Maintenance Bus,"
IEEE International Test Conference, September 1992

Lee, J., "Desk-Top Boundary Scan Test," ATE and Instrumentation Conference, January
1992

B-8

Lefebvre, M.E., "Functional Test and Diagnosis: A Proposed JTAG Sample Mode Scan
Tester," IEEE International Test Conference, 1990

Lester, R, Wasserman, S., "Implementing JTAG Boundary Scan With Methodologies
Which Minimize Design Overhead," Wescon Conference, 1989

Levy, A., "Industrial Testability Standard Fits Military Applications," Electronic
Products, October 1989

Ludemann, U., Vogt, H., "Boundary Scan-A User's Point of View," Wescon Conference,
1988

Ludvigson, M.T., "Thoughts on High Speed Data Bus Performance," IEEE National
Aerospace and Electronics Conference (NAECON), 1990

Maierhofer, J., "Hierarchical Self-Test Concept Based on the JTAG Standard," IEEE
International Test Conference, 1990

Mansoorian, B., Shookhtim, R, Lee, L.S., Shahrokhinia, S., "BiCMOS Testability
Circuits for IEEE 1149.1," Bipolar Circuits and Technology Meeting, 1991

Marshall, J., "A PC-Based JTAG Test Environment," Electro International Conference,
1991

Matos, J., Pinto, F. and Ferreira, J., "A Boundary Scan Test Controller for Hierarchical
BIST," IEEE International Test Conference, 1992

Maunder, C, "A D&T Special Report-Boundary Scan: And End-of-Term Report-IEEE
Std 1149.1 Survey Results," IEEE Design & Test of Computers, June 1992

Maunder, CM., Tulloss, R.E., "Testability on TAP," IEEE Spectrum, February 1992

Maunder, C, "Applications and Onward Development of ANSI/IEEE Std 1149.1," IEE
Colloquium on "Application and Development of the Boundary-Scan Standard',
December 1990

Maunder, C and TuUoss,R, The Test Access Port and Boundary Scan Architecture, IEEE
Computer Society Press, 1990

McBean, D., Moore, W., "Bridging Fault Algorithms for a Boundary Scan Board," IEE
Colloquium on 'Application and Development of the Boundary-Scan Standard',
December 1990

B-9

McClean, D., Romeu, J., "Design for Testability With JTAG Test Methods," Electronic
Design, June 8,1989

Mejzak, R.S., "JIAWG Diagnostic Concept and Commonality Requirements," IEEE
National Aerospace and Electronics Conference (NAECON), 1990

Meyer, J., "Society of Automotive Engineers AS4074 Family High-Speed, Fault-Tolerant
Data Communications Standards for Integrated Avionics," 9th Digital Avionics Systems
Conference, October 1990

Miller, B., "Scan Conversion of ASICs," Circuit Design, February 1990

Miske, M., "Addressing Basic 1149.1 Design Concerns," NEPCON, 1992

Mohaswaran, M., "Scan Design Gives Time to Market Edge," New Electronics, July-
August 1990

Moore, T.M., "A Workstation Environment for Boundary-Scan Interconnect Testing,"
IEEE International Test Conference, 1991

Modrow, M., Hatfield, D., "High Speed Bus Technology Development," Wright
Research and Development Center, Contract No.: F33615-83-C-1036; 2734; 02,
September 1989

Morgan, R.J., "System Testability Using Standard Logic," Electro Conference, 1990

Morley, S., Scharf, J., "Software Support for Boundary-Scan Techniques," Electronics
Test, June 1990

Moxon, T.W., "Design Trade-Offs When Implementing Boundary Scan in an Application
Specific Integrated Circuit," Third Annual IEEE ASIC Seminar and Exhibit, 1990

Muris, M., "Integrating Boundary Scan Test Into an ASIC Design Flow," IEEE
International Test Conference, 1990

Nagvajara, P., Karpovsky, M.G., Levitin, L.B., "Pseudorandom Testing for Boundary-
Scan Design With Built-in Self-Test," IEEE Design & Test of Computers, September
1991

Nelson, J.H., Shafer, L.T., Hamlin, D.B., "Performance Analysis for a Candidate Linear
Token-Passing, High-Speed Data Bus," IEEE National Aerospace and Electronics
Conference (NAECON), 1988

B-10

Nightingale, D., "Implementing Boundary Scan Testing With ASICs," Electronics
Manufacture & Test, March 1990

Oakland, S.F., "Combining IEEE Standard 1149.1 With Reduced-Pin-Count Component
Test," VLSI Test Symposium, 1991

Oresjo, S., "The Boundary Scan Alternative to Testing Surface Mount PC boards,"
Surface Mount Exposition and Conference, 1990

Oresjo, S., "Results of Using the 1149.1 Boundary-Scan Standard," NEPCON West,
1992

Parker, K.P., Oresjo, S., "A Language for Describing Boundary-Scan Devices," IEEE
International Test Conference, 1990

Parker, K.P., "Production Board Testing in a Boundary Scan Environment," Australian
Electronics Engineering, September 1990

Patel, K., "Data Bus Testing Through the Stages," MIL-STD-1553B and the Next
Generation, November 1989

Pearce, T.H., "Signal Processor Data Bus Requirements for Integrated Communications
Architectures (Military Aircraft)," Military Avionics Architecture for Today and
Tomorrow Seminar, 1988

Posse, K.E., "A Design-for-Testability Architecture for Multichip Modules," IEEE
International Test Conference, 1991

Prohofsky, T., "High Speed Data Bus Macro Instruction Set Architecture," IEEE
National Aerospace and Electronics Conference (NAECON), 1991

Pyron, C, Sallade, R, "Diagnostic Verification," IEEE International Test Conference,
September 1989

Quinnell, R.A., "JTAG Boundary-Scan Test: Adding Testability Also Aids Debugging,"
Electronic Design News (EDN), August 2,1990

Raymond, D., "Boundary Scan and ASIC Vectors in a Low Cost In-Circuit System,"
Electronics Manufacture & Test, Dec. 1990-Jan. 1991

Reed, C, "ATE Fixtaring Update: Frxturing in the 1990s," Evaluation Engineering,
September 1990

B-ll

Rich, B.A., Bartels, B.E., Cole, M.H., "Maintenance Technology for Advanced Avionics
Architecture," IEEE National Aerospace and Electronics Conference (NAECON), 1990

Richard, D., Anderson, G., Mclver, G., "Very High Speed Integrated Circuits (VHSIC).
Phase 2. Submicrometer Technology Development, Interoperability Standards,"
Contract No.: DAAK20-85-C-0376; 2700, November 30,1988

Richards, DJ., "Value of Testability Standards in Testing Commercial Products," IEEE
International Test Conference, 1988

Robinson, G., "Decision to Use Scan Must be a Joint One," Electronics Manufacture &
Test, September 1990

Robinson, G.D., Deshayes, J.G., "Interconnect Testing of Boards With Partial Boundary
Scan," IEEE International Test Conference, 1990

Robinson, J.P., "Circular Built-in Self-Test," Northcon Conference, 1989

Robinson, J.P., "Test Design and Boundary Scan," Southcon Conference, 1989

Rogel-Favila, B., "Automatic Test Generation and Fault Diagnosis of Boundary Scan
Circuits," 1EE Colloquium on 'Automated Testing and Software Solutions', April 1992

Runyon, S., "Boundary-Scan-Tool Users Are Doing It Themselves," Electronic
Engineering Times, February 11,1991

Russell, R.J., "The JTAG Proposal and Its Impact on Automatic Test," ATE and
Instrumentation Conference East, 1988

Sallade, R., et al, "Built In Test - Requirements, Issues and Architectures," Texas
Instruments Technical Journal, July-August 1989

Sallade, R, "Lessons Learned in Applying IEEE 1149.1 Testability in Defense System
Programs at Texas Instruments," Test Engineering Conference, 1991

Samad, M.A., "A Toolbox For ASIC Testability Automation," IEEE Custom Integrated
Circuits Conference, 1990

Scheiber, S.F., "Test Tactics for Partial-Scan Boards," Test & Measurement World, April
1991

B-12

Scholz, H.N., Tulloss, R.E., Yau, C.W., Wach, W., "ASIC Implementations of
Boundary-Scan and Built-in Self-Test (BIST)," Journal of Semi-Custom ICs, June 1989

Sedmak, Richard M., "Practical Considerations in BIST and Boundary-Scan
Implementation," Design and Test Expo, January 1992

Setty, A.A., Martin, H.L., "BIST and Interconnect Testing With Boundary Scan," IEEE
SOUTHEASTCON, 1991

Sharma, R., "Test Generation For Structural Testing With Boundary Scan," ATE and
Instrumentation Conference, January 1992

Sherratt, C.J., "ICL's First Development Using IEEE 1149.1 (JTAG)," IEE Colloquium
on 'Application and Development of the Boundary-Scan Standard', December 1990

Sicola, S., "JTAG (IEEE 1149.1) and a Self-Testing System," Test Engineering
Conference, 1991

Siguenza, A.V.l., "A Self-Test and Boundary-Scan Controller Chip Using the ETM Bus
Specifications," Northcon Conference, 1989

Smith, G.J., "Component Test Interface Survey," ATE and Instrumentation Conference
West, 1989

Spohrer, T., Marquette, D., Gallup, M., "Test Architecture of the Motorola 68040,"
Proceedings. IEEE International Conference on Computer Design: VLSI in Computers
and Processors, 1990

Sterba, D., Halliday, A., McClean, D., "ATPG and Diagnostics For Boards Implementing
Boundary Scan," Journal of Electronic Testing: Theory and Applications, March 1991

Stevens, R, "High Speed Data Bus Design Validation," National Aerospace and
Electronics Conference (NAECON), 1991

Teradyne and Texas Instruments, Inc., Serial Vector Format (SVF) Specifiation

Texas Instruments, "SCOPE Testability Products: Applications Guide," 1990

Thompson, P., "Coping With the Move to Boundary Scan Test," Electronics
Manufacture & Test, April 1990

B-13

Trotter, P., LaPadula, L., Pawlowski, G. and Rekieta, D., "Boundary Scan and BIST in
Large High Speed ASIC," Government Microcircuit Applications Conference
(GOMAC), 1989

Tulloss, R.E., "Market Forces Driving Acceptance of ANSI/IEEE Std 1149.1-1990
Boundary-Scan," Electro International Conference, 1991

Tulloss, R.E., Yau, C.W., "BIST and Boundary-Scan For Board Level Test: Test
Program Pseudocode," 1st European Test Conference, 1989

Turino, J., "Design For Test Using Boundary Scan and Testability Buses," Surface
Mount Technology, April 1991

Uhlhorn, R.W., "The Fiber-Optic High-Speed Data Bus For a New Generation of
Military Aircraft," IEEE LCS, February 1991

Uhlhorn, R.W., McDermott, T.A., Goldman, P.C., "An Overview of the Fiber-Optic
Active Star Coupler program," IEEE National Aerospace and Electronics Conference
(NAECON), 1990

Uhlhorn, R.W., "A Robust Fiber Optic Active Star Coupler For the SAE Linear Token-
Passing Multiplex Data Bus," IEEE Aerospace and Electronics Systems Magazine,
January 1989

Uhlhorn, R.W., "Fiber Optic Buses and Networks For Advanced Avionics
Architectures," Computing Systems Configuration for Highly Integrated Guidance and
Control Systems, 1988

Van de Goor, A.J., van Tetering, J.A.M., "A Low-Cost Tester For Boundary Scan,"
Microprocessors and Microsystems, March 1991

Van de Lagemaat, D., "Testing Multiple Power Connections With Boundary Scan," 1st
European Test Conference, 1989

Van Riessen, R.P., Kerkhoff, H.G., Kloppenburg, A., "Design and Implementation of a
Hierarchical Testable Architecture Using the Boundary Scan Standard," 1st European
Test Conference, 1989

Vining, S., "Tradeoff Decisions Made For a PI 149.1 Controller Design," IEEE
International Test Conference, 1989

B-14

Wagner, P.T., "Interconnect Testing With Boundary-Scan," IEEE International Test
Conference, 1987

Wang, L.-T., Marhoefer, M., McCluskey, E.J., "A Self-Test and Self-Diagnosis
Architecture For Boards Using Boundary Scans," 1st European Test Conference, 1989

Whetsel, L., "At-Speed Board Test Simplified via Embeddable Data Trace/Compaction
IC," IEEE AUTOTESTCON, September 1991

Whetsel, L„ "A Proposed Method of Accessing 1149.1 in a Backplane Environment,"
IEEE International Test Conference, September 1992

Whetsel, L., "An IEEE 1149.1 Backplane Access Approach," Design and Test
Conference, January 1993

Whetsel, L., "Proposed Updates to the IEEE 1149.1 Standard," ATE and
Instrumentation Conference, 1992

Whetsel, L., "JTAG Compatible Devices Simplify Board Level Design For Testability,"
Wescon Conference, 1989

Whetsel, L., "A Proposed Standard Test Bus and Boundary Scan Architecture," Wescon
Conference, 1988

Whetsel, L,. "Event Qualification: A Gateway to At-Speed Functional Testing," IEEE
International Test Conference, 1990

Whetsel, L,. "An IEEE 1149.1 Based Logic/Signature Analyzer in a Chip," IEEE
International Test Conference, 1991

Wilkins, B.R., "The BED Boundary Scan Project," IEE Colloquium on 'Application and
Development of the Boundary-Scan Standard', December 1990

Woppman, G., "Economics of Boundary Scan," Computer Design News, 1990

Yau, C.W., Jarwala, N., "The Boundary-Scan Master: Target Applications and
Functional Requirements," IEEE International Test Conference, 1990

Yau, C.W., Jarwala, N., "A Unified Theory For Designing Optimal Test Generation and
Diagnosis Algorithms For Board Interconnects," IEEE International Test Conference,
1989

B-15

Zorian, Y., CM Yau, "Linking BIST and Boundary Scan to Test Success," Test &
Measurement World, May 1991

Zorian, Y., Jarwala, N., "Designing Fault-Tolerant, Testable, VLSI Processors Using the
IEEE PI 149.1 Boundary-Scan Architecture," IEEE International Conference on
Computer Design, 1989

B-16

APPENDIX C.

ACRONYMS

3SB 3-State Buffer

A/D Analog to Digital

AAD Assign ADdress

AATD... Aviation Applied Technology Directorate

AB1 Analog Bus 1

AB2 Analog Bus 2

AC Alternating Current

AH Acceptor Handshake

AI Address Input bus

ANSI American National Standards Institute

AO Address Output bus

APO Acknowledge Protocol Output signal

APS F-22 Radar Array Power Supply

APSC Array Power Supply Control

AS Analog Switch

ASCH American Standard Code for Information Interchange

ASI Analog Scan In

ASIC Application Specific Integrated Circuit

ASO Analog Scan Out

ASP Addressable Shadow Port

ASSET(tm) Advanced Support System for Emulation and Test

AT&T American Telephone & Telegraph

ATDI Analog Test Data In

ATDO Analog Test Data Out

ATE Automatic Test Equipment

ATN ATteNtion

BC/RT Bus Controller/Remote Terminal

BiCMOS Bipolar Complementary Metal Oxide Semiconductor

C-l

BIST Built-in Self-Test

BIT Built-in Test

BM Bus Management

BNF Backus-Naur Form

BPM Basic Processing Module

BR Bypass Register

BSC Boundary-Scan Cells

BSDL Boundary Scan Description Language

BYPASS IEEE 1149.1 BYPASS instruction

C Controller

CAB Common Avionics Baseline

CAE Computer Automated Engineering

CBIT Continuous Self-Test Built-in Test

CLK system CLocK

CLS CLear Status

CMPOUT CoMPare OUTput

CND CanNot Duplicate

Commanche Light Helicopter

CPU Central Processing Unit

CRC Cyclic Redundancy Code

CUT Circuit Under Test

CWG Commonalty Working Group

D/A Digital to Analog

DAB DAta Byte

DAC Data ACcepted

DAC t Digital to Analog Converter

DARPA Defense Advanced Research Projects Agency

DAV DAta Valid

dB deciBels

DC Direct Current

DC or DCL Device CLear

DDT Define Device Trigger

C-2

DFT Design For Testability

DIB Device Identification Bits

DIO Discrete I/O

DIP Dual Inline Package

DLF Disable Listener Function

DMA Direct Memory Access

DMC Define MaCro

DoD Department of Defense

DR Data Register

DSP Digital Signal Processors

DT Device Trigger

EEPROM Electrically Erasable Programmable Read Only Memory

EL Extended Listener

EMC (IEEE PI 149.5) MTM-bus Enable Module Control command

EMI Electromagnetic Magnetic Interference

END END

EOI End Or Identify

EPROM Erasable Programmable Read Only Memory

EQC Event Qualification Cell

EQI Event Qualification Input

EQM Event Qualification Module

EQO Event Qualification Output

EQUAL Event QUALification architecture

ESE Event Status Enable

ETM-Bus Element Test and Maintenance Bus

EVT..... EVenT

EXT EXTension bit

EXTEST IEEE 1149.1 External TEST instruction

F22 Advanced Tactical Fighter

FET Field Effect Transitor

FF Flip-Flop

FM Failures/Milhon hours

C-3

FPGA Field Programmable Gate Array

GET Group Execute Trigger

GFLOPS Giga FLoating point Operations per Second

GMU . Gigabit Memory Unit

GPEB General Purpose Interface Bus

GTL Go To Local

HDL Hardware Description Language

HP Hewlett Packard

HSDB High Speed Data Bus

HSDL Hierarchical Scan Description Language

Ht Hierarchical Testability

I/O Input/Output

IBIT Initiated Built-in Test

IBM International Business Machines

IC Integrated Circuits

ICE In-Circuit-Emulation

ICT In Circuit Test

ID IDentification

IDCODE IEEE 1149.1 IDentification CODE instruction

IDN BDeNtification query

IDR Implementation Detail Register

IDY IDentifY

IEEE — Institute of Electrical and Electronics Engineers

IEEE Std 1149.1 Standard Test Access Port and Boundary Scan Architecture
IEEE Std 488 seeGPIB

IEEE Std PI 149.2 Extended Digital Serial Test Bus

IEEE Std PI 149.4 Mixed-Signal Test Bus

IEEE Std PI 149.5 Standard Module Test and Maintenance Bus Protocol

IEEE Std P1394 High Speed Serial Bus

BFA Input Filter Assembly

IFC InterFace Clear

IMP International Microelectronics Products

C-4

in inch

INTEST IEEE 1149.1 INternal TEST instruction

IOBD Integrated On-Board Diagnostics

IR Instruction Register

ISA Instruction Set Architecture

ISO ISOchronous

JIAWG Joint Integrated Avionics Working Group

JTAG Joint Test Action Group

KBPS Kilo Bits Per Second

kHz kiloHertz

L Listener

L/S Load/Scan control signal

LFSR Linear Feedback Shift Register

1-1 line-to-line

LL Link Layer

LLO Local LockOut

LRM Line Replaceable Module

LSB Least Significant Bit

LSSD Level Sensitive Scan Design

mA rnilliAmpere

MBPS Million Bits Per Second

MBS Memory Bank Substrate

MCLK (IEEE PI 149.5) MTM-bus CLocK

MCM Multi-Chip Module

MCTL (IEEE PI 149.5) MTM-bus ConTroL

MDU Memory Driver Unit

MFLOPS Mega FLoating point OPerations per Second

MHz MegaHertz

MICT Module I/O Control and Test

MIL-HDBK-217E Military HanDBooK 217E

MIL-Std-1553B........ Multiplexed Data Bus

MJJL-Std-1773 Fiber Optics Command/Response Multiplex Data Bus

C-5

MIPS Million Instructions Per Second

MLA My Listen Address

MMC (F-16) Modular Mission Computer

MMD - (IEEE PI 149.5) MTM-bus Master Data

MPR Module Pause Request

ms milliseconds

MSA My Secondary Address

MSB Most Significant Bit
MSD (IEEE PI 149.5) MTM-bus Slave Data

MTA ...My Talk Address

MTBF Mean Time Between Failure

MTM-bus Module Test and Maintenance bus

MUX Multiplexer

MX Multiplexer

NDAC Not Data Accepted

NOP No OPeration

NRFD Not Ready For Data

ns nanosecond

OPC OPeration Complete

OPT OPTion ID query

OSA Other Secondary Address

OTA Other Talk Address

P-P peak to peak

PBIT Periodic Built-in Test

PC Personal Computer

PC-AT Personal Computer-Advanced Technology
PCB Pass Control Back

PCB Printed Circuit Board

PCG Primary Command Group

PI Primary Input

Pi-bus Parallel Intermodule bus

PIC .-• Processor Interface Chip

C-6

PICC • Processor Interface Control and Communications

PIPO Parallel-In/Parallel Out

PISO Parallel Input/Serial Output

PO Primary Output

pp Parallel Poll

PPC Parallel Poll Configure

PPD Parallel Poll Disable

PPE Parallel Poll Enable

PPR Parallel Poll Response

PPU Parallel Poll Unconfigure

PRE Parallel Poll Enable Register

PRPG Pseudo Random Pattern Generator

PRST Power up ReSeT circuit

PSA Parallel Signature Analysis

PSA Physical Station Address

PSAR Parallel Signature Analysis Register

PSC Power on Status Clear

PTCK Primary port TCK

PTDI Primary port TDI

FIDO Primary port TDO

PTMS Primary port TMS

PTU PI-Bus/TM-Bus Unit

PUD Protected User Data

PWB Printed Wiring Board

R/T Run/Test control signal

RAM Random Access Memory

RCL.. ReCalL instrument state

RCR ReCeiveR circuit

RDT Resource Description Transfer

REN Remote ENable

RFD Ready For Data

RISC Reduced Instruction Set Computer

C-7

RL , Remote Local

ROM Read Only Memory

RQS ReQuest Service

RST ReSeT

RSTA ReSeT Address

RT/EDLE Run Test/IDLE

RTOK Re-Test OK

RUNBIST IEEE 1149.1 RUN BIST instruction

SAE Society of Automotive Engineers

SAMPLE/PRELOAD IEEE 1149.1 SAMPLE or PRELOAD instruction

SAP Scan Access Port

SRAM Static Random Access Memory

SAV SAVe instrument state

SBIT Start-up Built-in Test

SC Semiconductor

SCI Serial Bus Interface

SDC Selected Device Clear

SEM-E Standard Electronic Module-size E

SH Source Handshake

SI Serial Input

SIPO Serial Input/Parallel Output

SM-Bus System Maintenance Bus

SMT Surface Mount Technology

SO Serial Output

SP-bus Signal Processing bus

SPD Serial Poll Disable

SPE Serial Poll Enable

SPS Scan Path Selector

SR or SRQ Service ReQuest

SRE Service Request Enable

SSA Serial Signature Analysis

SSR Solid State Recorder

C-8

STB STatusByte

STCK Secondary port TCK

STDI Secondary portTDI

STDO Secondary port TDO

STM Select Test Mode

STMS Secondary port TMS

SVF Serial Vector Format

T Talker

TAB Tape Automated Bonding

TAP Test Access Port

TBC Test Bus Controller

TBE Test Bus Evaluation

TCK IEEE 1149.1 TestClocK

TCT Take ConTrol

TDI IEEE 1149.1 Test Data Input

TDO IEEE 1149.1 Test Data Output

TE Extended Talker

TI Texas Instruments

TL Transaction Layer

TLRST Test Logic ReSeT state

TM-Bus (module level) Test and Maintenance Bus

TMS IEEE 1149.1 Test Mode Select

TRG TRiGger

TRST IEEE 1149.1 TestReSeT

TSMD Time Stress Measurement Device

TST Self-TeST query

TTL Transistor-Transistor Logic

UNL UNListen

us microseconds

USERCODE IEEE 1149.1 USER CODE instruction

UUT Unit Under Test

V Voltage

C-9

VCP Vector Co-Processor

Vdc Voltage of direct current

VHDL VHSIC Hardware Description Language in IEEE Std 1076-1987

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VMS (F-22) Vehicle Management System

WAI WAIt to complete

WSI Wafer Scale Integration

XBAR CrossBAR switch

XMT TransMiTter circuit

»U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61197

C-10

